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Abstract 
The main contribution of this paper is the synthesis of 
optimality conditions for the truncated network of the 
generalized orthonormal basis in the case where all the 
poles belong to the set of real numbers. These conditions 
are brought to a very simple form, but their solutions are 
not trivial. They generalize the optimality conditions for 
the truncated Laguerre network and are very attractive in 
system identification, model representation, and model 
reduction frameworks. 
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1. Introduction 
The output Y(z) of any linear time invariant (LTI) system 
may be represented by a sum of an infinite series of 
orthonormal functions {qn(z.)}r=,, weighted by their 

respective Fourier coefficients g,, provided they constitute 
a complete basis in H2(D') where D' is the complement of 
the unit disk in the complex Hardy plane H2. 

Y k )  = 2 g n % ( z ) W  (1) 
"=I, 

In practice, a truncation at N+l terms is often performed 
and the usefulness of system representation on a desired 
basis is limited by the rate of convergence of the Fourier 
coefficients, g,'s, or the rate by which the error term 

- 2  

clg, I tends to zero as N tends to infinity. 
n = N + I  

The most popular of these bases is definitely the basis of 
FIR filters in which case each function R ( z )  is simply 

replaced by the nth term of the sequence { z - ~ } ; ~ ) .  

However, the major problem with FIR filters is the low 
convergence rate of their Fourier coefficients, especially 
for discretized systems with high sampling frequency 
compared to the dominant time constant. An extended 
discussion of this problem is presented in [Linskog, 19961. 
The advantage of Laguerre functions is that they overcome 
this problem by introducing an extra parameter 'a' known 
in the discrete case as time scale factor. 
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All the authors among whom, [Wahlberg, 19911, [Wang, 
19941, and [Linskog, 19961 agree that the time scale factor 
'a '  must be chosen near the dominating time constant of 
the system in order to ensure a fast convergence rate of 
Fourier coefficients. 
[Clowes, 19651 was the first to raise the question of the 
optimal choice of the Laguerre time scale factor. He 
established the well known optimality condition for the 
truncated Laguerre network with a real pole 

gda)gN+da) = 0 (3) 
Though this equation seems simple, its solution is not 
trivial because 'a' intervenes in a nonlinear way in the 
Fourier coefficients. Due to the complexity of the solutions 
of equation (3) many researchers have investigated the 
choice of optimal time scale factor. First proposed 
algorithms [Parks, 19711, [Fu et al, 19931 and [Wang et al, 
19941 were restrained to the use of input signals which 
power spectrum is white ensuring the orthogonality of the 
output of Laguerre filters. Other algorithms followed, [e 
Silva, 19951 and [Malti et al, 19981, dropping this 
constraint away. 
Though the use of Laguerre filters improves considerably 
system's representation with orthonormal functions, their 
major inconvenience is that they accept only one real pole. 
Hence, they are not suited to approximate under-damped 
systems which have complex conjugate poles. To 
overcome this problem, [Kautz, 19541 proposes to use 
another decomposition basis which took his name. It is 
mostly known in the case of two-parameters Kautz filters 
and has two complex conjugate poles p and p*. 
After generalizing the optimality condition (3), for the 
truncated Laguerre network with a complex pole, [e Silva, 
19951 has established the optimality conditions for the 
truncated Kautz network with complex conjugate poles. 
The two are similar since the latter is 

(4) 

or g;Y:; (p ,p*)=  g : z ( p , p * ) = O  
Recently, [Ninness and Gustafsson, 19971 have proposed, 
to utilize a generalized orthonormal basis which is not 
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limited to the use of either one real pole or two complex 
conjugate ones. They ;Ne presented either as causal filters 
when d = 1 or strictly causal when d = 0 in the following 
definition 

where all the poles 5,, are assumed inside the unit circle and 

5, is defined as 5, = [to 5,  ... t n r .  All the vectors are 

underlined throughout this paper. 
From the definition (5a), one may establish the following 
recursive formula 

- - 

which eases the network representation of the functions of 
the generalized basis, q defining the forward shift operator 

...._+ 
Y N W  

Figure 1 - Network representation 

All the discussed functions are orthonormal and form a 
complete basis with respect to the scalar product which is 
defined as 

and which reciprocal in the frequency domain is 
established using Parseval's formula 

where T is the unit circle and a( .} is the z-transform of the 
function between brackets. 

2. Optimality conditions for the truncated 
network of the generalized basis 

Though the generalized basis is defined for any number of 
complex poles of any multiplicity, we will restrict 
ourselves to the determination of optimality conditions in 
the case where all the poles belong to the set of real 

numbers. Hence, the conjugate part will be dropped in the 
definitions (5a&b) and (6a&b). 
The estimated output which depends on the truncation 
order and the set of poles is written as 

The modeling error, EN(k,&),  due to the truncation, is 

presented as 

The quadratic error, which is defined as half the scalar 
product of the error by itself, is formulated in the time 
domain as 

or in the frequency domain as 

The optimal values of the coefficients are obtained by 
applying the orthogonality property of Hilbert spaces. The 
result is the following set of normal equations. 

Furthermore, the stationary points of the set of the poles 
must satisfy the following vector equation 

Note that IN and EN are differentiated w.r.t. the vector S N  
and that the scalar product in (9) is performed between 
each 'function' element of that vector and the scalar 
'function' which is on the RHS of the parentheses. This 
notation is kept through equations (IO) and (1 1). 
Combining (9) and (7a) and then taking into account (8) 
and (7b) gives the following 

- 

Now, a relation needs to be established between the 
derivatives of an's w.r.t. the poles and gn's. It is presented 
in lemma 1. 

Lemma 1 - Expansion of a on 8 , ' s  

Let gn<z,&) be the generalized basis defined by (5a). Then, 
the following decomposition holds for every i I n 

a9 ( z , t  ) 
Jt; 
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where C,,i,j's are defined in table 1. H 

Convention It will be assumed throughout this paper that 

nfi = 1 if the lower index m is greater than the upper 

index n,f; being any non-zero expression. H 
Remark 1 One should keep in mind that Cn,;,, = 0 if i > n, 
because every function a,, does not depend on the pole 
which index is greater than n. Otherwise, the values of Cn,i,j 
are to be taken from table 1.H 
The basic idea to prove lemma 1 is first to establish, by 
introducing the logarithm on both sides of (5a) and 
differentiating them w.r.t. the poles, a relation between 

n 

i=m 

j j < i  
c n. 1. I - 0 

, 3, z 2 and other terms in z. aa" ( Zl I,) 
( 9  4 -- 

a5 i 

i < j < n  j = n  j > n  
0 

- An.;? k = j + l  A,,,mi k 7 ' + l  

fi ( l - c i t k )  
k =n 

fi (l - k i c k )  
k = j  

After noticing that each expression is a linear transfer 
function, the property of completeness of the generalized 
basis is used to decompose each derivative in terms of the 
functions of the generalized basis by performing its scalar 
product with g j  z.5 . when j varies from 0 to -. 
The substitution of (11) in (10) and the use of the 
orthonormality property of the functions of the generalized 
basis, yields 

( A) 

where '%, j b) = [ cn,O, j b) ',,I, j b) ' ' ' ' n , N ,  j b)lT 
Transforming the above vector equation to N+l scalar 
equations, by substituting Cn,j&), obtained from the last 

column of table 1 and keeping in mind remark lyields a set 
~ f N + l  equations which general term is given by 

i = 0, ...) N (13) 
Note that each equation is of infinite dimension and has 
infinite degrees of freedom, because no constraint is 
imposed on 6, when j goes from N+l to -, while looking 
for the optimal 6, when j varies from 0 to N. 
Simplifying mi from (13), substituting A,,. by its value as 
defined in table 1 ,  inverting the order of the summations, 
and factoring yields 
c I -  

= O  

L 

N degrees of freedom will be used in order to compute the 
optimality conditions of the Mh order network. 
To see how the next steps will be done, one should rewrite 
the first terms of the infinite summation in (14) for i = N. 
He will see, then, that (tN - cN+l) can be factored out of all 
the terms starting at j = N+2 to - which are all set to zero 
by imposing 

Repeating these steps which general formulation is 
presented in (16) for every i, allows to obtain all the 
constraints which contribute to simplify (14). 

b+1= b. (15) 

(see at the bottom of this page) 
By imposing the constraint 
( Z , N - ; + I = ~ ~ ,  forevery i = O ,  ... N 

'an ( 2 % ~ )  

a6 i Table 1 - Coefficients of the decomposition of 

[1 n=, 
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one gets rid of the last term of the summation and is left 
only with 

The obtained result is summarized in the following theorem. 

Theorem 1 Let S,(z, 5,) be the n* function of the 

generalized basis defined by (5a) and g , L )  the Fourie: 

coefficients associated to 8,(z, En). If all the poles belong to 
the set of real numbers i.e. c1 E 31 ('d i = 0 ... N), then, the 
optimality conditions of the truncated generalized basis 
network of order N+ 1, n varying from 0 to N, is the solution 
of the set of N+l equations which general term is (18), 
under the N+1 constraints which general term is (17), both 
resulting from varying i from 0 to N.@ 

Further simplifications of theorem 1 
The aim of this section is to simplify further theorem 1, by 
rewriting equation (18) in a simpler and more convenient 
manner. For that purpose, an equivalence relation needs to 
be established between two Mh order generalized networks 
having the same set of poles ordered in different manner. 
Further details are given in the following lemma. 

Lemma 2 The two sets of functions, (.,(z,S,)} and 

{ S, ( z . g ) } ,  defined by (5a), where 

- 5, =[CO 61 ... 5,l' 
0 and['3N1 defines a permutation between any element C1, i 

= 0, ...( N - l), and the element 5 ~ ,  from the vector 5, , 

which means that 
- 

gl= [CO ... 6,-1 5, 5 1 + 1  ... 6 , - I  6 1 ] T 9  (1% 
span the same vector space.@ 
Lemma 2 indicates that the decomposition of any LTI, 
stable transfer function, G(z), on either of the truncated 

networks (., ( z , L ) }  or [ S, (z,w)] is equivalent. 

Assuming that gn w) are the Fourier coefficients 

associated with [ 8, (z,c - kN1)] , this is mathematically 

written as 

zero gives rise to (N - i +1) equations which are sufficient to 
establish a relation between the coefficients gn e) and 

g, (SN) for every It = i, . . .N. 
The expression of the last coefficient of the permuted basis 
i.e. g N k ) ,  in terms of the coefficients of the non- 

permuted basis g, (5N) n = i, . . .N,  is obtained after tedious 

calculations 

The same reasoning holds on the approximation of a system 
on the basis of (2N + i - 1) filters of the generalized basis by 
imposing the set of constraints defined by (17) on the 
elements of the permuted vector i.e. by imposing 

[ 5 2 N + I  ... C 2 N - i  6,tl 52N- i+2  

= [ t o  
CN+* 5 2 N - i + l ]  

5,-1 5, S i + l  * * *  5,-1 C i ]  

It yields the following result, after tedious calculations 

Replacing equations (21) and (22) in (18) simplifies 
theorem 1 which is now presented as 
Theorem 1 bis Let 

0 

8,(z&) be defined by (5a), 

g,(SN) be the Fourier coefficients associated with 

5, = [ C O  ... 51-1 5, 51+1 .-. 5,-, 5,r be the vector of 
poles associated with 8,(z&) where ti  E 3 ('d i = 3 . . . 
N), 

and !'E;"' = [ C O  ... 51-1 5, 5,+1 ... t,-, 6,IT be the 
permuted vector of poles. The permutation is d0r.e 
between the element i and the element N in the vector 

Then, the optimality conditions for the truncated 
generalized basis network of order N+l (from 0 to N) i s  thc 
solution of the set of N + 1 equations (23) resulting fi-07 
all the permutations of the element C1, i = 0, 1, . . . N, wish 
the element 5 N  in the vector of poles 5, . 

Sfl(Z,kd 

- 

- 

- 5,. 

- 

g,&)g,+l@)=O i = O ,  1, ... N 

The and the (i@'+l) Fourier coefficients are recalcu!esr', 
after each permutation. The vector of poles used to 

calculate gNtl @) is the following 
Replacing all the 8,'s by their expression obtained from 
(5a), and equating the coefficients of all the powers of z to 
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Ek"] = 5, * - -  5i_1 4 ,  5i+1 ..* 5N-l  5; 5; . El 
- [k N+I elements 'I' 
A straightforward implication of theorem 1 bis, is the 
derivation of the well-known optimality conditions for the 
truncated Laguerre network which is due to [Clowes, 19651, 
presented in equation (3). 

3. Example 
Determine the optimal second order truncated network of 
the generalized basis for the system which unit-sample 
response is 

3 

h(k)  = zAibF-' + A,(k  - l)bf-',  k =  1,2,  ... 00 (24) 
i= l  

where A I  = 0.5, A2 = 2, A3 = -1, A4 = 0.156, 
and 
Its quadratic norm is IlHI? = 4.799. 
Independently from the proposed method and for the sake 
of verifying the results, we have plotted the quadratic 
criterion and isocriteria curves versus the poles. Indeed, 
using equation (7a) and the property of orthonormality, it is 
straightforward to show that 

b, = 0.6, b2 = -0.7,b3 = -0.5, bq = 0.8. 

Where the coefficients are expressed with respect to the 
poles by projecting H(z )  on each function of the basis 

Figure (2) shows the obtained iso-criteria curves. Note that 
there exists several extrema points. They are all symmetrical 
with respect to the axis 50 = C1. The purpose of solving the 
optimality equations is essentially to determine these 
stationary points. 

-0 8 -0 h -0 4 -0 2 0 0 2 04 0 6 0 8 t i  
lsocriteria curves 

Figure 2 - Quadratic error versus the poles 

For that purpose, the use of theorem 1 shows that the 
optimality conditions for a second order generalized basis is 
the solution of the two equations 

f I ( 5 0 ~ 5 1 )  = g1&)g2kI)= 0 
where g2 and g3 are computed after imposing the constraints 
5 2  = 51 and 5 3  = 50. 
Due to the complexity of fo(50,5~) and fi(5fl,41), calculated 
using the software Maple V, the computation of their zeros 
is not trivial and cannot be expressed analytically. However, 
their isolevel at the plane defined by (26) is plotted in figure 
(3). Each intersection point of the function fo(5fl,51) with 
fi(50,51) in that plane gives a stationary point of the criterion 
with respect to the poles. 
Note that fo(E,o&) and fi(50,51) are symmetrical w.r.t. the 
line 50 = Hence, the optimality conditions can also be 
written as 

f1(5,~50)= g1([51 5l)I)g2([51 50 501)=0 

fI(S"&l> = g1([50 511)g2([50 51 511)= 0 
which corresponds to, nothing else but, the result 
announced in theorem 1 bis. 
Note that if 50 = 51, then fo(60, 50) simplifies to fi(50, CO) in 
(26), which represents the optimality conditions for the 
truncated Laguerre network (see figure 3). 

Figure 3 - Intersection of the two curves is the solution 
of optimality conditions 

The solutions of (26), computed numerically, are presented 
in table 2 with their respective coefficients and quadratic 
error. 

Ist line 
2nd line 
3"' line 
4' line 
Sh line 

5 0  

-0.774 
0.898 

0.5580 
0.8096 

-0.733 

51 

0.898 
-0.774 
-0.733 
0.558 
0.810 

go lgl 11 (60 9 5 , )  
I"* /2 

0.58 % 
0.58 % 
22.25 % 
61.62 % 
60.28 % 

Table 2 - The solutions of (29), their respective 
coefficients, and quadratic error 

By comparing all the values of the last column of table 2, 
one may notice that t k  choice of the first two lines 
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correspond to the global minimum of the generalized basis' 
functions. The third line corresponds to the global minimum 
of Laguerre basis' functions. 
Applying the results of either line one or two of table 2 to 
equation (5a), the optimal second order generalized basis' 
network was computed. 
Then, applying the results of line three to equation (2), the 
optimal second order Laguerre basis' network was 
computed. Both of the:n were excited with a dirac delta and 
a step signal. Their outputs are compared to the response of 
the original unit sample response (24) in the following 

I :  (a) Impulse response I 
"0 5 IO 15 20 25 30 35 40 

6 
(b) Step response 

o! ' I 
0 5 I O  15 20 25 30 35 40 

Figure 4 - Responses to particular input signals 

Figure (4) shows that a second order optimal Laguerre 
network fails to approach the original system, especially in 
the steady state (low frequencies). This remark is confirmed 
through Bode diagrams plotted in figure (5) .  Higher order 
Laguerre networks are, definitely, necessary. However, a 
second order generalized basis network with optimally 
chosen poles is much more suited to approximate systems 
with scattered poles. 

4. Conclusions 
The optimality conditions for the choice of real poles of the 
generalized basis were established in this paper. They 
generalize the well known results concerning the choice of 
the Laguerre pole. The algorithms discussed herein are 
suited to model simplification and model reduction. 
However, based on the results established in theorems 1 and 
1 bis, nonlinear optimization algorithms can be realized for 
the choice of optima! poles in the scope of system 
identification. We are currently working on the 

generalization of the results obtained herein to the case of 
complex poles. 

Gain diagram Original Fystcm 
_ _ _ - I - -  - - - -  

1 0.2 I O  ' lo" IO' 

-100 

Phase diagram 

-A"" 

1 o-2 Id1 Id' 1 o1 

Figure 5 - Bode plots 
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