Process input estimation with a multiple model. Application to communication

Abdelkader AKHENAK, Didier MAQUIN and José RAGOT

Presented by Abdel AITOUCHE

Institut National Polytechnique de Lorraine
Centre de Recherche en Automatique de Nancy
UMR 7039 CNRS – Université Henri Poincaré, Nancy 1 – INPL
Goals
Introduction

Goals

- To design a nonlinear observer with unknown inputs
- To be able to estimate the unknown inputs
Introduction

Goals
- To design a nonlinear observer with unknown inputs
- To be able to estimate the unknown inputs

Means
Goals
• To design a nonlinear observer with unknown inputs
• To be able to estimate the unknown inputs

Means
• To describe the system behaviour with the help of a multiple model
• To cancel or compensate the unknown inputs
Goals

• To design a nonlinear observer with unknown inputs

• To be able to estimate the unknown inputs

Means

• To describe the system behaviour with the help of a multiple model

• To cancel or compensate the unknown inputs

Difficulties
Goals

- To design a nonlinear observer with unknown inputs
- To be able to estimate the unknown inputs

Means

- To describe the system behaviour with the help of a multiple model
- To cancel or compensate the unknown inputs

Difficulties

- Design of the multiple model (out of purpose)
- Satisfaction of structural constraints
- Resolution of bilinear matrix inequalities
Brief recall of the linear case (1)

Linear dynamical model

\[
\begin{align*}
 x(t + 1) &= A x(t) + B u(t) + R\tilde{u}(t) \\
 y(t) &= C x(t)
\end{align*}
\]
Brief recall of the linear case (1)

Linear dynamical model

\[
\begin{align*}
 x(t + 1) &= Ax(t) + Bu(t) + R\ddot{u}(t) \\
 y(t) &= Cx(t)
\end{align*}
\]

Unknown input observer

\[
\begin{align*}
 z(t + 1) &= Nz(t) + Gu(t) + Ly(t) \\
 \hat{x}(t) &= z(t) - Ey(t)
\end{align*}
\]
Brief recall of the linear case (1)

Linear dynamical model

\[
\begin{align*}
 x(t+1) &= Ax(t) + Bu(t) + R\tilde{u}(t) \\
 y(t) &= Cx(t)
\end{align*}
\]

Unknown input observer

\[
\begin{align*}
 z(t+1) &= Nz(t) + Gu(t) + Ly(t) \\
 \hat{x}(t) &= z(t) - Ey(t)
\end{align*}
\]

State estimation error

\[
\begin{align*}
 e(t) &= x(t) - \hat{x}(t) \\
 e(t) &= (I + EC')x(t) - z(t)
\end{align*}
\]
Brief recall of the linear case (1)

Linear dynamical model

\[
\begin{aligned}
x(t + 1) &= Ax(t) + Bu(t) + R\tilde{u}(t) \\
y(t) &= Cx(t)
\end{aligned}
\]

Unknown input observer

\[
\begin{aligned}
z(t + 1) &= Nz(t) + Gu(t) + Ly(t) \\
\hat{x}(t) &= z(t) - Ey(t)
\end{aligned}
\]

State estimation error

\[
\begin{aligned}
e(t) &= x(t) - \hat{x}(t) \\
e(t) &= (I + EC')x(t) - z(t)
\end{aligned}
\]
State estimation error dynamics

\[e(t + 1) = Ne(t) + (PA - NP - LC)x(t) + (PB - G)u(t) + \\
(PR - KF)\bar{u}(t) + EF\bar{u}(t + 1) \]
State estimation error dynamics

\[e(t + 1) = Ne(t) + (PA - NP - LC)x(t) + (PB - G)u(t) + \\
(PR - KF)\bar{u}(t) + EF\bar{u}(t + 1) \]

Autonomous conditions

\[PA - NP - LC = 0 \]
State estimation error dynamics

\[e(t + 1) = Ne(t) + (PA - NP - LC)x(t) + (PB - G)u(t) + \]
\[(PR - KF)\bar{u}(t)) + EF\bar{u}(t + 1) \]

Autonomous conditions

\[PA - NP - LC = 0 \]
\[PB - G = 0 \]
State estimation error dynamics

\[e(t + 1) = Ne(t) + (PA - NP - LC)x(t) + (PB - G)u(t) + \\
(PR - KF)\bar{u}(t) + EF\bar{u}(t + 1) \]

Autonomous conditions

\[PA - NP - LC = 0 \]
\[PB - G = 0 \]
\[PR - KF = 0 \]
\[EF = 0 \]
Brief recall of the linear case (2)

State estimation error dynamics

\[e(t + 1) = Ne(t) + (PA - NP - LC)x(t) + (PB - G)u(t) + \\
(PR - KF)\bar{u}(t)) + EF\bar{u}(t + 1) \]

Autonomous conditions

\[PA - NP - LC = 0 \]
\[PB - G = 0 \]
\[PR - KF = 0 \]
\[EF = 0 \]

Asymptotic convergence

\[N \text{ stable} \]
Structure description

\[
\begin{aligned}
x(t + 1) &= \sum_{i=1}^{M} \mu_i(\xi(t)) (A_i x(t) + B_i u(t) + R_i \bar{u}(t)) \\
y(t) &= Cx(t) + F\bar{u}(t)
\end{aligned}
\]
Multiple model case

Structure description

\[
\begin{align*}
\begin{cases}
x(t + 1) &= \sum_{i=1}^{M} \mu_i(\xi(t)) (A_i x(t) + B_i u(t) + R_i \bar{u}(t)) \\
y(t) &= C x(t) + F \bar{u}(t)
\end{cases}
\end{align*}
\]

with

\[
\begin{align*}
\begin{cases}
\xi(t) &= \{u(t), x(t), y(t)\} \\
\sum_{i=1}^{M} \mu_i(\xi(t)) &= 1, \quad 0 \leq \mu_i(\xi(t)) \leq 1
\end{cases}
\end{align*}
\]
Multiple model

\[
\begin{align*}
\begin{cases}
 x(t + 1) &= \sum_{i=1}^{M} \mu_i(\xi(t)) (A_i x(t) + B_i u(t) + R_i \bar{u}(t)) \\
y(t) &= C x(t) + F \bar{u}(t)
\end{cases}
\end{align*}
\]
Design of a multiple observer (1)

Multiple model

\[
\begin{align*}
 x(t+1) &= \sum_{i=1}^{M} \mu_i(\xi(t)) \left(A_i x(t) + B_i u(t) + R_i \bar{u}(t) \right) \\
 y(t) &= C x(t) + F \bar{u}(t)
\end{align*}
\]

Multiple observer

\[
\begin{align*}
 z(t+1) &= \sum_{i=1}^{M} \mu_i(\xi(t)) \left(N_i z(t) + G_i u(t) + L_i y(t) \right) \\
 \hat{x}(t) &= z(t) - E y(t)
\end{align*}
\]
Design of a multiple observer (1)

Multiple model

\[
\begin{align*}
 x(t + 1) &= \sum_{i=1}^{M} \mu_i(\xi(t)) \left(A_i x(t) + B_i u(t) + R_i \bar{u}(t) \right) \\
 y(t) &= C x(t) + F \bar{u}(t)
\end{align*}
\]

Multiple observer

\[
\begin{align*}
 z(t + 1) &= \sum_{i=1}^{M} \mu_i(\xi(t)) \left(N_i z(t) + G_i u(t) + L_i y(t) \right) \\
 \hat{x}(t) &= z(t) - E y(t)
\end{align*}
\]

State estimation error

\[
e(t) = x(t) - \hat{x}(t)
\]
Asymptotic convergence of the estimation error

\[e(t + 1) = \sum_{i=1}^{M} \mu_i(\xi(t)) N_i e(t) \]
Asymptotic convergence of the estimation error

\[e(t + 1) = \sum_{i=1}^{M} \mu_i(\xi(t)) N_i e(t) \]

if

\[
\begin{align*}
P &= I + EC \\
N_i P &= PA_i - L_i C \\
K_i &= N_i E + L_i \\
PR_i &= KiF \\
G_i &= PB_i \\
EF &= 0
\end{align*}
\]

and

\[N = \sum_{i=1}^{M} \mu_i(\xi(t)) N_i \quad \text{stable} \]
Asymptotic convergence of the estimation error

\((A_i, C)\) observable pairs, \(F\) with full column rank and \(\forall i, \in \{1, ..., M\}\) :

\[
N_i^T X N_i - X < 0
\]

\[
N_i = PA_i - K_i C
\]

\[
P = I + EC
\]

\[
PR_i = K_i F
\]

\[
EF = 0
\]

\[
L_i = K_i - N_i E
\]

\[
G_i = PB_i
\]

where \(X \in \mathbb{R}^{n \times n}\) is symmetric and positive definite.
Asymptotic convergence of the estimation error

\((A_i, C)\) observable pairs, \(F\) with full column rank and
\(\forall i, \in \{1, \ldots, M\}\):

\[
N_i^T X N_i - X < 0
\]

\[
N_i = PA_i - K_i C
\]

\[
P = I + EC
\]

\[
PR_i = K_i F
\]

\[
EF = 0
\]

\[
L_i = K_i - N_i E
\]

\[
G_i = PB_i
\]

where \(X \in IR^{n \times n}\) is symmetric and positive definite.
Solution of the system of equation (1)

System

\[N_i^T X N_i - X < 0 \]
\[N_i = PA_i - K_i C \]
\[P = I + EC \]
\[PR_i = K_i F \]
\[EF = 0 \]
Solution of the system of equation (1)

System

\[N_i^T X N_i - X < 0 \]
\[N_i = PA_i - K_i C \]
\[P = I + EC \]
\[PR_i = K_i F \]
\[EF = 0 \]

Solution

\[E = I - FF^- \]

\[F^- \] generalized inverse of \(F \)
Solution of the system of equation (2)

System

\[N_i^T X N_i - X < 0 \]

\[N_i = P A_i - K_i C \]

\[P = I + EC \]

\[PR_i = K_i F \]

\[EF = 0 \]
Solution of the system of equation (2)

System

\[N_i^T X N_i - X < 0 \]

\[N_i = PA_i - K_i C \]

\[P = I + EC \]

\[PR_i = K_i F \]

\[EF = 0 \]

Solution

\[N_i^T X N_i - X = (PA_i - K_i C)^T X (PA_i - K_i C) < 0 \]

\[PR_i = K_i F \]

Bilinear matrix inequalities w.r.t. to \(K_i \) and \(X \) s.t. equality constraints.
Solution of the system of equation (3)

Matrix inequalities

\[
\begin{align*}
(P A_i - K_i)^T X (P A_i - K_i) &< 0 \\
PR_i &= K_i F
\end{align*}
\]
Solution of the system of equation (3)

Matrix inequalities

\[
\begin{align*}
(PA_i - K_i)^TX(PA_i - K_i) &< 0 \\
PR_i &= K_iF
\end{align*}
\]

Change of variables

\[W_i = XK_i\]
Solution of the system of equation (3)

Matrix inequalities

\[
\begin{cases}
(PA_i - K_i)^T X (PA_i - K_i) < 0 \\
PR_i = K_i F
\end{cases}
\]

Change of variables

\[W_i = XK_i\]

Schur complement

\[
\begin{cases}
X \\
XP_Ai - WiC \\
PR_i = Wi F
\end{cases}
\begin{pmatrix}
X \\
A_i^T PX - C^TW_i \\
X
\end{pmatrix} > 0
\]
Solution of the system of equation (3)

Matrix inequalities

\[
\begin{align*}
(PA_i - K_i)^T X (PA_i - K_i) &< 0 \\
PR_i &= K_i F
\end{align*}
\]

Change of variables

\[W_i = X K_i\]

Schur complement

\[
\begin{align*}
\begin{pmatrix}
X & A_i^T PX - C^T W_i \\
X PA_i - W_i C & X
\end{pmatrix} > 0 \\
X PR_i &= W_i F
\end{align*}
\]

Linear matrix inequalities w.r.t. \(X\) and \(W_i\)
Solution of the system of equation (4)

System

\[N_i^T X N_i - X < 0 \]

\[N_i = PA_i - K_i C \]

\[P = I + EC \]

\[PR_i = K_i F \]

\[EF = 0 \]

\[L_i = K_i - N_i E \]

\[G_i = PB_i \]
Solution of the system of equation (4)

System

\[N_i^T X N_i - X < 0 \]
\[N_i = P A_i - K_i C \]
\[P = I + E C \]
\[P R_i = K_i F \]
\[E F = 0 \]
\[L_i = K_i - N_i E \]
\[G_i = P B_i \]

Sequence of calculus

\[E \rightarrow P \rightarrow G_i \text{ and } (X, W_i) \rightarrow K_i = X^{-1} W_i \rightarrow N_i \rightarrow L_i \]
Model of the system

\[
\begin{align*}
x(t + 1) &= \sum_{i=1}^{M} \mu_i(\xi(t)) (A_i x(t) + B_i u(t) + R_i \bar{u}(t)) \\
y(t) &= C x(t) + F \bar{u}(t)
\end{align*}
\]
Model of the system

\[
\begin{align*}
x(t + 1) &= \sum_{i=1}^{M} \mu_i(\xi(t)) (A_i x(t) + B_i u(t) + R_i \bar{u}(t)) \\
y(t) &= C x(t) + F \bar{u}(t)
\end{align*}
\]

Model applied on signal estimations

\[
\begin{align*}
\hat{x}(t + 1) &= \sum_{i=1}^{M} \mu_i(\xi(t)) (A_i \hat{x}(t) + B_i \hat{u}(t) + R_i \hat{u}(t)) \\
\hat{y}(t) &= C \hat{x}(t) + F \hat{u}(t)
\end{align*}
\]

where \(\hat{u}(t) \) is an estimation of the unknown input \(\bar{u}(t) \)
Model applied on signal estimations

\[
\begin{align*}
\hat{x}(t + 1) &= \sum_{i=1}^{M} \mu_i(\xi(t)) \left(A_i \hat{x}(t) + B_i u(t) + R_i \hat{u}(t) \right) \\
\hat{y}(t) &= C \hat{x}(t) + F \hat{u}(t)
\end{align*}
\]
Unknown input estimation (2)

Model applied on signal estimations

\[
\begin{cases}
\hat{x}(t + 1) = \sum_{i=1}^{M} \mu_i(\xi(t)) \left(A_i \hat{x}(t) + B_i u(t) + R_i \hat{\bar{u}}(t) \right) \\
\hat{y}(t) = C \hat{x}(t) + F \hat{\bar{u}}(t)
\end{cases}
\]

Unknown input estimation

\[
\hat{\bar{u}}(t) = (W^T W)^{-1} W^T \left(\hat{x}(t + 1) - \sum_{i=1}^{M} \mu_i(\xi(t)) \left(A_i \hat{x}(t) + B_i u(t) \right) \right)
\]

\[
\hat{x}(t + 1) - \sum_{i=1}^{M} \mu_i(\xi(t)) \left(A_i \hat{x}(t) + B_i u(t) \right) \\
y(t) - C \hat{x}(t)
\]

with

\[
W = \left(\sum_{i=1}^{M} \mu_i(\xi(t)) R_i \right) F
\]
Multiple model

\[
\begin{aligned}
x(t + 1) &= \sum_{i=1}^{2} \mu_i(\xi(t))(A_i x(t) + R_i \bar{u}(t)) \\
y(t) &= C x(t) + F \bar{u}(t)
\end{aligned}
\]
Multiple model

\[
\begin{align*}
 x(t + 1) &= \sum_{i=1}^{2} \mu_i(\xi(t))(A_i x(t) + R_i \bar{u}(t)) \\
 y(t) &= C x(t) + F \bar{u}(t)
\end{align*}
\]

with

\[
\begin{align*}
 \xi(t) &= y(t) \\
 \mu_1(\xi(t)) &= \frac{1}{2}(1 - \tanh(\xi(t))) \\
 \mu_2(\xi(t)) &= 1 - \mu_1(\xi(t))
\end{align*}
\]
Multiple model

\[
\begin{align*}
 x(t + 1) &= \sum_{i=1}^{2} \mu_i(\xi(t)) \left(A_i x(t) + R_i \bar{u}(t) \right) \\
 y(t) &= C x(t) + F \bar{u}(t)
\end{align*}
\]

with

\[
\begin{align*}
 \xi(t) &= y(t) \\
 \mu_1(\xi(t)) &= \frac{1}{2} \left(1 - \tanh(\xi(t)) \right) \\
 \mu_2(\xi(t)) &= 1 - \mu_1(\xi(t))
\end{align*}
\]

\[
A_1 = \begin{bmatrix} -1.1 & 0.5 \\ 0.3 & 0.7 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0.8 & -0.1 \\ 1 & 1.1 \end{bmatrix}
\]

\[
C = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix}, \quad F = 5
\]
Encoding – decoding

\[\bar{u}(t) \xrightarrow{\text{Multiple model}} y(t) \xrightarrow{\text{Transmission}} \Delta u(t) \]

Encoding

Decoding
Transmitted and original signals
Actual and estimated states and decoded message
Activation functions

Output and message
• Multiple model representation is well adapted for nonlinear system modelling
• Multiple model representation is well adapted for nonlinear system modelling

• Capacity to transpose the classical “results” (linear case) to nonlinear systems
Conclusion

- Multiple model representation is well adapted for nonlinear system modelling
- Capacity to transpose the classical “results” (linear case) to nonlinear systems
- General range of the method suggested related to the capacity of representation of the multiple model
Conclusion

- Multiple model representation is well adapted for nonlinear system modelling
- Capacity to transpose the classical “results” (linear case) to nonlinear systems
- General range of the method suggested related to the capacity of representation of the multiple model
- Promising application in the context of secure communications