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ABSTRACT: In this paper the problem of active fault tolerant control (FTC) in noisy systems is studied.
The proposed FTC strategy is based on the known of the fault estimate and the error between the faulty system
state and a reference system state. A proportional integral observer is used in order to estimate the state
and the actuator faults. The obtained results are then extended to nonlinear systems described by nonlinear
Takagi-Sugeno models. The problem of conception of the proportional integral observer and the FTC strategy
is formulated in linear matrix inequalities (LMI) which can be solved easily. Simulation examples are given to
illustrate the proposed method for the linear and nonlinear systems.
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1 Introduction

A state observer is a dynamical system allowing the
state reconstruction from the system model and the
knowledge of its inputs and outputs (D.G. Luen-
berger, 1971). For linear models, state estimation
methods are very efficient (C. Edwards, 2004). How-
ever for many real systems, the linearity hypothesis
cannot be assumed. Indeed, the unceasing demand
in terms of reliability and performance of systems has
led to the use of nonlinear models to represent sys-
tems. Therefore obtained models are very complex
and the task of model-based fault diagnosis becomes
more difficult to achieve. In that case, the synthesis of
a nonlinear observer allows the reconstruction of the
system state. Many different approaches have been
developed for dealing with that problem. Among
them, let us cite sliding mode observers (C. Edwards
and S.K. Spurgeon, 2000), the Thau-Luenberger ob-
servers (F.E. Thau, 1973) and the so-called multiple
observers for nonlinear systems described by Takagi-
Sugeno models (P. Bergsten, et al., 2002).
Recently, Takagi-Sugeno Fuzzy systems have been
the subject of many researches by virtue of their
approximation capabilities. They can represent ex-
actly a nonlinear model (K. Tanaka, et al., 1998),
(M. Witczak et al., 2008). They are constructed by a
set of linear models blended together with nonlinear
functions holding the convex-sum property. In the
case of Takagi-Sugeno Fuzzy systems, state estima-
tion is based on the design of a nonlinear observer

(multiple observer) using the same nonlinear weight-
ing functions as the Takagi-Sugeno model.
In most cases, processes are subjected to disturbances
which have as origin the noises due to its environ-
ment and the model uncertainties. Moreover, sensors
and/or actuators can be corrupted by different faults
or failures. Many works are dealing with state estima-
tion for systems with unknown inputs or parameter
uncertainties. (S.H. Wang, et al., 1975) propose an
observer able to entirely reconstruct the state of a lin-
ear system in the presence of unknown inputs and in
(L. M. Lyubchik and Y. T. Kostenko, 1993), to es-
timate the state, a model inversion method is used.
Using the Walcott and Zak structure observer (B. L.
Walcott and S. H. Zak, 1988), Edwards et al. (C.
Edwards and S.K. Spurgeon, 2000),(C. Edwards and
S.K. Spurgeon, 1994) have also designed a convergent
observer using the Lyapunov approach.
In the context of nonlinear systems described by
Takagi-Sugeno models, some works tried to recon-
struct the system state in spite of the unknown in-
put existence. This reconstruction is assured via
the elimination of unknown inputs (Y. Guan and M.
Saif, 1991). Other works choose to estimate, simul-
taneously, the unknown inputs and system state (A.
Akhenak et al., 2009), (D. Ichalal et al., 2009), (A.
Khedher et al., 2008), (A. Khedher et al., 2010), (R.
Orjuela et al., 2009). Unknown input observers can
be used to estimate actuator faults provided they are
assumed to be considered as unknown inputs. This
estimation can be obtained using of a proportional in-
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tegral observer (A. Khedher et al., 2008). That kind
of observers gives some robustness property of the
state estimation with respect to the system uncer-
tainties and perturbations (S. Beale and B. Shafai,
1989), ( R. Orjuela et al., 2008).
Faults affecting systems have harmful effects on the
normal behaviour of the process and their estimation
can be used to conceive a control strategy able to min-
imize their effects (fault tolerant control (FTC)). A
control loop can be considered fault tolerant if there
exist adaptation strategies of the control law included
in the closed-loop that introduce redundancy in actu-
ators (M. Witczak et al., 2008). Fault Tolerant Con-
trol (FTC) is, relatively, a new idea in the research
literature (M. Blanke et al., 2003) which allows to
have a control loop that fulfils its objectives when
faults appear.
There are two main groups of Control strategies: the
active and the passive techniques. The passive tech-
niques are control laws that take into account the
fault appearance as a system perturbation. This kind
of control is described in (M. Blanke et al., 2003), (J.
Chen et al., 1998), (Y. Liang et al., 2000), (Z. Qu et
al., 2001), (F. Liao et al., 2002), (Z. Qu et al., 2003).
The active fault tolerant control techniques consist on
adapting the control law using the information given
by the FDI block (M. Blanke et al., 2003),(Y. Zhang
et al., 2003).
In this paper, an active FTC strategy is proposed. A
similar FTC strategy is proposed in (M. Witczak et
al., 2008) for the class of discrete systems. In (M.
Witczak et al., 2008) Witczak et al. use the error be-
tween the faulty and the reference systems. In real
cases the faulty system state is unknown. The main
contribution in this work is to propose a solution to
this problem replacing the faulty system state by its
estimate. State estimation is made using a propor-
tional integral observer to estimate faults. Once the
fault is estimated, the FTC controller is implemented
as a state feedback controller. In this work the ob-
server design and the control implementation can be
made simultaneously. First, the propose approach is
developed in the context of linear systems and then
it is extended to Takagi-Sugeno fuzzy systems.
The paper is organised as follows. Section 2 presents
the proposed method in the case of linear systems.
The extension of this method for Takagi-Sugeno (T-
S) systems is the subject of section 3. Numerical ex-
amples which show the performance of the proposed
approach are presented in the two sections.

2 The linear system case

The objective of this part is to conceive an actuator
fault tolerant control for linear systems case

2.1 Problem formulation

Consider the linear model described by:

ẋ(t) = Ax(t) +Bu(t) (1a)

y(t) = Cx(t) (1b)

where x(t) ∈ Rn represents the system state, y(t) ∈
Rm is the measured output, u(t) ∈ Rr is the system
input. A, B and C are known constant matrices with
appropriate dimensions.
Consider the linear model affected by actuator faults
and a measurement noise described by:

ẋf (t) = Axf (t) +Buf (t) + Ef(t) (2a)

yf (t) = Cxf (t) +Dw(t) (2b)

where xf (t) ∈ Rn represents the system state, yf (t) ∈
Rm is the measured output, uf (t) ∈ Rr is the system
input, f(t) represents the fault which is assumed to
be bounded and w(t) is the measurement noise. E

and D are respectively the fault and the noise distri-
bution matrices which are assumed to be known.
The structure of the chosen proportional integral ob-
server is as follows:

˙̂xf (t) = Ax̂f (t) +Buf (t) + Ef̂(t) +K(ỹf (t)) (3a)

˙̂
f(t) = L(ỹ(t)) (3b)

ˆ̂yf (t) = Cx̂f (t) (3c)

where x̂f (t) is the estimated state, f̂(t) represents the
estimated fault, ŷf (t) is the estimated output, K is
the proportional observer gain and L is its integral
gain which must be computed. ỹf (t) = yf (t)− ŷf (t).
The system input uf (t) is conceived by being inspired
of the strategy proposed in (M. Witczak et al., 2008)
and described by the following expression :

uf (t) = −S ˆf(t) +N(x(t) − x̂f (t)) + u(t) (4)

where S and N are two constant matrices with ap-
propriate dimensions. The objective is to find the
matrices S and N which permit to the state xf to
converge to x.
Let us define x̃(t) the error between the states x(t)
and xf (t), x̃f (t) the estimation error of the state xf

and f̃(t) the fault estimation error :

x̃(t) = x(t) − xf (t) (5)

x̃f (t) = xf (t) − x̂f (t) (6)

f̃(t) = f(t) − f̂(t) (7)

The dynamics of x̃(t) is given by:

˙̃x(t) = ẋ(t) − ẋf (t)

= (A−BN)x̃(t) +BSf̂(t) −BNx̃f (t) − Ef(t) (8)

Choosing S so that E = BS, the dynamics of x̃(t)(t)
becomes :

˙̃x(t) = (A−BN)x̃(t) −BNx̃f (t) − Ef̃(t) (9)
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The dynamics of x̃f (t) is expessed as follow :

˙̃xf (t) = ẋf (t) − ˙̂xf (t)

= (A−KC)x̃f (t) + Ef̃(t) −KDw(t) (10)

and the dynamics of the fault estimation error is de-
scribed by:

˙̃
f(t) = ḟ(t) −

˙̂
f(t)

= ḟ(t) − LCx̃f (t) − LDw(t) (11)

In order to simplify the notations, the time index (t)
will be omitted henceforth.
The following vectors are introduced:

ϕ =
[

x̃T x̃T
f f̃T

]T

and ψ =
[

wT ḟT
]T
(12)

From the equations (9), (10) and (11), one can obtain:

ϕ̇ = A0ϕ+B0ψ (13)

with :

A0 =





A − BN −BN −E

0 A − KC E

0 −LC 0



 and B0 =





0 0
−KD 0
−LD I





(14)

In order to analyse the convergence of the generalized
estimation error ϕ(t), let us consider the following
quadratic Lyapunov candidate function V (t):

V (t) = ϕT (t)Pϕ(t) (15)

where P denotes a positive definite matrix.
The problem of robust state and fault estimation is
reduced to find the gains K and L of the observer to
ensure an asymptotic convergence of x̃f and f̃ toward
zero when ψ(t) = 0 and to ensure a bounded error
when ψ(t) 6= 0. The problem of the design of the
input uf (t) is reduced to find the matrix N to ensure
the convergence of x̃(t) to zero. ϕ converges to zero
if V̇ < 0. V̇ < 0 if AT

0
P + PA0 < 0.

The matrices A0 and B0 can be expressed as:

A0 =

[

A−BN E1

0 Ã− K̃C̃

]

and B0 =

[

0

Ĩ − K̃D̃

]

(16)

with :

Ã =

[

A E

0 0

]

, K̃ =

[

K

L

]

, Ĩ =

[

0 0
0 I

]

(17)

C̃ =
[

C 0
]

, D̃ =
[

D 0
]

, E1 =
[

−BN −E
]

(18)

Assuming that P has the block diagonal form P =
diag(P1, P2), it can be observed from the structure
of A0 that the eigenvalues of the matrix A0 are the
union of those of A−BM and Ã− K̃C̃. This clearly

indicates that the design of the control uf (t) and the
P. I. observer can be carried out independently (sepa-
ration principle). Thus, it is clear from the expression
of P that ϕ converges to zero iff there exist matrices
P1 > 0 and P2 > 0 such that following inequalities
are satisfied:

(A−BN)TP1 + P1(A−BN) < 0 (19)

(Ã− K̃C̃)TP2 + P2(Ã− K̃C̃) < 0 (20)

By multiplying (19) from left and right by P−1

1
one

obtain :

P−1

1
(A−BN)T + (A−BN)P−1

1
< 0 (21)

Substituing W = P−1

1
, the equation (21) becomes :

W (A−BN)T + (A−BN)W < 0 (22)

ϕ converge to zero if there exist two definite and pos-
itive matrices W and P2 satisfying (20) and (22).
The inequalities (20) and (22) are not linear, substi-
tuting X = NW , and Y = P2K̃, their become :

WAT +AW −XTBT −BX < 0 (23)

ÃTP2 + P2Ã− Y C̃ − C̃TY T < 0 (24)

The resolution of the linear matrices inequalities
(LMI) (23) and (24) permits to find the matrices W ,
P2, X and Y . The matrices N and K̃ are computed
using the following equations :

N = XW−1 (25)

K̃ = P−1

2
Y (26)

2.2 Example

Consider the linear systems described by the equa-
tions (1) and (2) with C = I and:

A =









−0.3 −3 −0.5 0.1
−0.7 −5 2 4

2 −0.5 −5 −0.9
−0.7 −2 1 −0.9









, E =









1 2
5 1
4 −1
1 2









D =









0.5 0.5
0.2 0.2
0.1 0.1
0 0.1









, B =









1 1
2 1
0 2
−1 −2









The system input u(t) =
[

u1(t)
T

u2(t)
T

]T

with:

u1(t) is a telegraph type signal varying between zero
and one, u2(t) = 0.3 + 0.1 sin(πt)

The fault f(t) =
[

f1(t)
T

f2(t)
T

]T

with :

f1 =

{

0, t ≤ 4sec
0.1 ∗ sin(πt), t > 4sec

and f2 =

{

0, t ≤ 1.5sec
0.4, t > 1.5sec
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The computation of the matrices K, L and N gives :

L =

[

0.140 6.863 4.682 0.007
3.069 3.192 −2.167 5.699

]

N =

[

0.056 −1.063 1.754 −0.731
0.750 −0.865 −1.210 −0.284

]

K =









2.590 0.564 −0.239 0.637
−3.635 −1.160 1.083 0.138
1.562 2.585 −1.357 −0.498
0.415 2.551 −0.283 3.234









The simulation results are shown in the figures (1) to
(3) :

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

Figure 1: Error between x and xf
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Figure 2: Estimation error of xf

The input uf (t) is computed using the equation (4),
this input permits to the system (2) to have the same
behaviour with the system (1). This input is shown
in figure (4).
The conceived observer allows to estimate the state
xf and the control uf (t) is a fault tolerant control
applied to the system (2).
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Figure 3: Faults and their estimations
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Figure 4: fault tolerant control uf

2.3 Conclusion

In this part the problem of fault estimation and fault
tolerant control strategy is studied in the case of lin-
ear system. A method which permits simultaneously
the fault estimation and the conception of the fault
tolerant control is proposed. This control is com-
puted using the fault estimate and the error between
the state of a system affected by a fault and a ref-
erence system state. In the next section the pro-
posed method will be extended to nonlinear systems
described with multiple models.

3 Extension to multiple models representa-

tion

Multiple model approach is an appropriate tool for
modelling complex systems using a mathematical
model which can be used for analysis, controller and
observer design. The basis of the multiple model ap-
proach is the decomposition of the operating space of
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the system into a finite number of operating zones.
Hence, the dynamic behaviour of the system inside
each operating zone can be modelled using a simple
submodel, for example a linear model. The relative
contribution of each submodel is quantified with the
help of a weighting function. Finally, the approxima-
tion of the system behaviour is performed by associ-
ating the submodels and by taking into consideration
their respective contributions. Note that a large class
of nonlinear systems can accurately be modelled us-
ing multiple models.
The choice of the structure used to associate the sub-
models constitutes a key point in the multiple mod-
elling frameworks. Indeed, the submodels can be ag-
gregated using various structures (D. Filev, 1991).
Classically, the association of submodels is performed
in the dynamic equation of the multiple model us-
ing a common state vector. This model, known as
Takagi-Sugeno multiple model, has been initially pro-
posed, in a fuzzy modelling framework, by Takagi
and Sugeno (T. Takagi and M. Sugeno, 1985) and in
a multiple model modelling framework by Johansen
and Foss (T.A. Johansen and A.B. Foss, 1992). This
model has been largely considered for analysis, mod-
elling, control and state estimation of nonlinear sys-
tems.

3.1 On the multiple model representation

The structure of a Takagi-Sugeno model is :

ẋ(t) =
M
∑

i=1

µi(ξ(t)) (Aix(t) +Biu(t)) (27a)

y(t) =

M
∑

i=1

µi(ξ(t))Cix(t) (27b)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rr control
vector, y(t) ∈ Rm vector of measures and Ai, Bi and
Ci are known constant matrices with appropriate di-
mensions.
The membership functions µi(ξ(t)) assure a progres-
sive passage between the local models. These have
the following proprieties:

M
∑

i=1

µi(ξ(t)) = 1,∀t (28)

and 0 ≤ µi(ξ(t)) ≤ 1, ∀i = 1...M,∀t (29)

The variable of decision ξ(t) is accessible in real time
and it depends of measurable variables like system
inputs or outputs.
Let’s remark that state matrices of this kind of mul-
tiple models are built by the made of a level-headed
sum, with variable weight of different matrices of lo-
cal models. One can also make a similarity between
multiple models and systems with variables parame-
ters in time.

If, in the equation which defines the output, we im-
pose that C1 = C2 = ... = CM = C, the output of
the multiple model (27) is reduced to : y(t) = Cx(t)
and the multiple model becomes:

ẋ(t) =

M
∑

i=1

µi(ξ(t))(Aix(t) +Biu(t)) (30a)

y(t) = Cx(t) (30b)

In this part the method proposed for linear systems
will be extended to nonlinear systems described by
multiple models.

3.2 Problem formulation

A non linear system described by multiple model can
be expressed as follow:

ẋ(t) =

M
∑

i=1

µi(ξ(t))Aix(t) +Bu(t) (31a)

y(t) = Cx(t) (31b)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rr is the
input vector, y(t) ∈ Rm the output vector and Ai, Bi

and C are known constant matrices with appropriate
dimensions. The scalar M represents the number of
local models.
Consider the following nonlinear Takagi-Sugeno
model affected by actuator faults and measurement
noise:

ẋf (t) =

M
∑

i=1

µi(ξ(t))Aixf (t) +Buf (t) + Ef(t) (32a)

yf (t) = Cxf (t) +Dw(t) (32b)

where xf (t) ∈ Rn is the state vector, uf (t) ∈ Rr is
the input vector, yf (t) ∈ Rm the output vector. f(t)
represents the fault which is assumed to be bounded
and w(t) is the measurement noise. E and D are
respectively the fault and the noise distribution ma-
trices which are assumed to be known.
The structure of the proportional integral observer is
chosen as follows:

˙̂xf (t) =
M
∑

i=1

µi(ξ(t))(Aix̂f (t) +Ki(ỹ(t))) +

Buf (t) + Ef̂(t) (33a)

˙̂
f(t) =

M
∑

i=1

µi(ξ(t))(Liỹ(t)) (33b)

ŷf (t) = Cx̂f (t) (33c)

where x̂f (t) is the estimated system state, f̂(t) repre-
sents the estimated fault, ŷf (t) is the estimated out-
put, Ki are the local models proportional observer
gains and Li are their integral gains to be computed.
ỹ(t) = yf (t) − ŷf (t).
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The system input uf (t) is conceived on the base of
the strategy described by the following expression :

uf (t) = −Sf̂(t) + u(t) (34)

where S is a constant matrix with appropriate dimen-
sions. The dynamics of the errors defined in (5), (6)
and (7) can be written as follow:

˙̃x(t) =

M
∑

i=1

µi(ξ(t))Aix̃(t) +BSf̂(t) − Ef(t) (35)

Choosing S so that E = BS, the dynamics of x̃(t)
becomes :

˙̃x(t) =
M
∑

i=1

µi(ξ(t))Aix̃(t) − Ef̃(t) (36)

The dynamic of x̃f (t) can be written in the case of
multiple models :

˙̃xf (t) = (

M
∑

i=1

µi(ξ(t))(Ai −KiC)x̃f (t)

−KiDw(t)) + Ef̃(t) (37)

The dynamic of the fault error estimation can be writ-
ten :

˙̃
f(t) = ḟ(t) −

M
∑

i=1

µi(ξ(t))(LiCx̃f (t) + LiDw(t))(38)

In order to simplify the notations, the time index (t)
will be omitted henceforth.
The equations (36), (37) and (38) can be rewritten :

ϕ̇ = Amϕ+Bmψ (39)

with ϕ and ψ are given by the equation (12) and :

Am =

M
∑

i=1

µi(ξ(t))Ami and Bm =

M
∑

i=1

µi(ξ(t))Bmi

(40)

where :

Ami =





Ai 0 −E

0 Ai − KiC E

0 −LiC 0



 and Bmi =





0 0
−KiD 0
−LiD I





(41)

Considering the Lyapunov function given in (15) the
errors converge to zero if V̇ < 0. V̇ < 0 if AT

miP +
PAmi < 0, ∀i ∈ {1, ...,M}.
The matrices Ami and Bmi can be rewritten :

Ami =

[

Ai E1

0 Ãi − K̃iC̃

]

and Bmi =

[

0

Ĩ − K̃iD̃

]

(42)

with :

Ãi =

[

Ai E

0 0

]

, K̃i =

[

Ki

Li

]

, Ĩ =

[

0 0
0 I

]

(43)

C̃ =
[

C 0
]

, D̃ =
[

D 0
]

, E1 =
[

0 −E
]

(44)

Assuming that P has the block diagonal form P =
diag(P1, P2), ϕ converges to zero iff there exist matri-
ces P1 > 0 and P2 > 0 such that following inequality
is satisfied:

[

AT

i P1 + P1Ai E1P2 + P1E1

P2E
T

1 + ET

1 P1 (Ãi − K̃iC̃)T P2 + P2(Ãi − K̃iC̃)

]

< 0

(45)

Substituting Vi = P2K̃i, (45) becomes:

[

AT

i P1 + P1Ai E1P2 + P1E1

P2E
T

1 + ET

1 P1 ÃT P2 + P2Ã − ViC̃ − C̃T V T

i

]

< 0 (46)

The resolution of the linear matrix inequality (LMI)
(47) permits to find the matrices P1, P2 and Vi. The

matrices K̃i are computed using K̃i = P−1

2
Vi.

Summarizing the following theorem can be proposed:
Theorem: The system (39) describing the evolution

of the errors x̃(t), x̃f (t) and f̃(t) is stable if there
exist symmetric definite positive matrices P1 et P2

and matrices Vi, i ∈ {1...M} so that the following
LMI are verified :

[

AT

aiP1 + P1Aai E1P2 + P1E1

P2E
T

1 + ET

1 P1 ÃT P2 + P2Ã − ViC̃ − C̃T V T

i

]

< 0

(47)

The observer gains are obtained by: K̃i = P−1

2
Vi.

3.3 Illustrative example

Let us consider the multiple model (31), made up of
two local models and involving four states and four
outputs with C = I, ξ(t) = u(t) and:

A1 =









−0.3 −3 −0.5 0.1
−0.7 −5 2 4

2 −0.5 −5 −0.9
−0.7 −2 1 −0.9









, B =









1 1
2 1
0 2
−1 −2









A2 =









−0.2 −3 −0.6 0.3
−0.6 −4 1 −0.6

3 −0.9 −7 −0.22
−0.5 −1 −2 −0.8









, D =









0.5 0.5
0.2 0.2
0.1 0.1
0 0.1









Consider the non linear system affected by an actu-
ator fault and described by the equation (32) with:

E =

[

1 5 4 1
2 1 −1 2

]T

The chosen weighting functions depend on the two
inputs of the system. They have been created on the
basis of Gaussian membership functions. Figure 5
shows their time-evolution showing that the system
is clearly nonlinear since µ1 and µ2 are not constant
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Figure 5: Weighting functions

functions. The system input and the faults are used
for the linear example. The computation of the ma-
trices K1, L1, K2 and L2 gives :

L1 =

[

−0.362 8.727 6.036 −0.823
4.736 4.751 −3.795 8.575

]

L2 =

[

−0.475 8.308 6.643 1.225
4.951 1.660 −3.470 8.753

]

K1 =









3.958 1.106 −0.601 1.055
−3.830 0.703 1.766 0.026
1.590 3.225 0.510 −1.028
1.335 3.025 −0.750 5.637









K2 =









4.057 0.901 −0.166 1.165
−3.503 1.718 2.229 0.623
2.053 1.344 −1.495 −0.541
1.615 −1.160 −3.587 5.730









Simulation results are shown in figures (6) to (8).
The proposed observer allows well the state and fault
estimation. Even in the case of nonlinear system de-
scribed by multiple models the proposed method per-
mit to conceive a fault tolerant control strategy. The
control conceived is applied to a system affected by an
actuator fault. Fault estimation is very important be-
cause the fault estimate is used to compute the fault
tolerant control strategy. This control is shown in the
figure (9).

4 Conclusion

In this work, an active FTC strategy was proposed.
First, this approach was developed in the case of
linear systems and then it was extended to Takagi-
Sugeno fuzzy systems. The main contribution of the
proposed approach is in the use of the proportional
integral observer to estimate faults. Once the fault
is estimated, the FTC controller is implemented as a
state feedback controller. This controller is designed
such that it can stabilize the faulty plant using Lya-
punov theory and LMIs. The observer design and the
control implementation can be made simultaneously.
Illustrative examples both for linear and non-linear
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Figure 6: Error between x and xf
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Figure 7: Estimation error of xf
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Figure 8: Faults and their estimations

systems described by T-S fuzzy models are provided
that show the effectiveness of the proposed Propor-
tional integral observer and the FTC approach. Fur-
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Figure 9: Fault tolerant control uf

ther research will be oriented towards implementing
an adaptive FTC strategy in the case of systems af-
fected by sensors faults.
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