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Abstract: This paper addresses a new scheme for fault diagnosis iineanisystems described by
Takagi-Sugeno multiple models. Two cases are considdnedirst one concerns the T-S models with
known premise variables (the input or the output of the sykt&or the second case it is supposed that
the weighting functions depend on unmeasurable premisables (state of the system). The approach
is based on the design of observer-based residual genésatoinimization of the disturbances effect
and maximizing the effects of the faults. The synthesis $&tan the, formalism developed for linear
systems. The convergence conditions are given in LMI foatioh.

Keywords: Fault diagnosis, Nonlinear systems, TakagieBogystems, LMI formulation.

1. INTRODUCTION notations and states the problem. Robust residual geoerati
is tackled in section 3. An LMI-based design of the residual

Linear models are largely studied and an important liteesis  9€nerator is proposed. The proposed observers are used for
devoted to this class of systems. Although they provide-sol{FD in section 4 and before concluding, a numerical example
tions for many problems, nonlinear behavior are often prese'S 9'Ven-
in practical systems then reduce the domain of applicgbilit
and the performances of the tools developed for linear nsodel 2. PROBLEM STATEMENT
Indeed, a linear model only represents the behavior of the sy
tem around a local operating point. It is known that nonlineaConsider the following continuous-time TS nonlinear syste
systems are complex and difficult to study, so all the works ogubject to faultsf(¢) and disturbanced(t) given by
the nonlinear systems concern only specific classes, bt ihe ”
no a general framework like for linear systems. One of theemor| ..(4) — _ _ _ . .
interesting classes of nonlinear systems is the TakagéSug () ;Mz(ﬁ(t» (Ase(t) + Biu(t) + Eid(t) + Fif (1))
(TS) multiple model form which was introduced in Takagi an r
Sugeno [1985]. It is proved in Tanaka and Wang [2001] that y(t) = Z/M(f(ﬁ)) (Cix(t) + Dju(t) + Gid(t) + R; f(t))
often nonlinear behaviors can be represented exactly soapp i=1
imated by TS multiple models. The main advantage of these (1)
models is the ability to extend the tools designed in thealine WhereA4; € R"*", B; € R"*"«, C; € R™*", D; € R ",
system framework. Indeed, many topics of control are exddnd E; € R"*", F; € R"*"/, G; € R"*", andR; € R™"v>"7.
to TS systems, such as stability and stabilization in Tagak& ¢ \yeighing functiong; are nonlinear and depend on the de-
[1998], Guerra et al. [2006], Chadli et al. [2002], obses@nd  ;igjon variablet (1) Whi?h can be measurable liKeu(t), y(t)}
state estimation in Akhenak etal. [2007], Bergsten et@808. o ot measurable like the statét) of the system. The weight-

Due to an increasing demand for higher performances, as w#lg functions satisfy the following properties:

as for higher safety and reliability, the model-based apghes 0< pu(E@) <1

to fault diagnosis for dynamic systems have received more r 5
attention these last years Patton et al. [1989], Chen and@Zha Z,Ui(f(t)) =1 @)
[1991], Chen et al. [1996], Ding and Frank [1989], Marx et al. i=1

[2003]. Concerning the TS fuzzy systems few efforts havebeerhys the structure of the multiple model is simple and is a
made in fault detection and |solafuon. Nevertheless we @an ¢ piversal approximator since it can represent any nonfinea
the method based on observers in Akhenak et al. [2007], Mapgghavior according to an adequate numbefthe local models

etal. [2007]. (chap 14 of Tanaka and Wang [2001]). The multiple model

In this paper an observer-based approach is developed-for géructure provides a mean to generalize the tools developed
bust residual generator and diagnosis which minimizesehe s for linear systems to nonlinear systems due to the propertie
sitivity to the disturbances and maximizes the sensititgtthe ~ €xpressed in (2).

faults. Two cases are studied. Th.e first case concerns theThe input signals(t), f(¢) andd(t) belong inL, set. Thel,-

S systems with measurable premise variables and the second T

one deals with the systems with unmeasurable premise Vafisrm ofu(t) € £, is given byllull, =/ [ uTudt.

ables. The paper is organized as follows, section 2 givegsom 0



In the field of observer design and diagnosis of nonlinear syahere

tems using multiple model approach, Patton et al. [1998] pro ror
posed an observer-based method to generate residual genera Ae = Z Z wi (&)1 (&) (A — LiC)
and using an observer bank in order to achieve isolation, an i=1 k=1
application to DC motor is proposed. In Akhenak et al. [20@7] -
sliding mode observer for TS systems is proposed to detect an Ee = Z Z pi(E)n; (€)(Ei — LiGy)
estimate actuator faults. In these works, the authors asdum il k=l
that the weighting functions depend on measurable premise — . , T
variables (input or output) of the system. It is clear tha th Fe ;;M(g)w (O)(F: — LiBs) ©)
choice of measurable premise variables offers a good siitypli o r
to generalize the methods already developed for lineaesyst Ce = Z wi(&)MC;, Ge = Z wi(§)MG;,
But in the case where the premise variables are not measurabl i=1 i=1
the problem becomes very hard. However, this formalism is .
very important in both the exact representation of the mesl Re = Z wi(§) MR,

i=1

behavior by multiple model (see the simulation example) and =

in diagnosis method based on observer banks to detect dr@f convenience, the system (4) can be written under the

isolate actuator and/or sensor faults. Indeed in this dhse, following compact form

use of measurable premise variables requires to develop two 7= Grad+ Gt f (6)

g;zzrselj':;gglt'ple models, but using multiple models with-u JvhereG., represents the transfer from the disturbant(@sto
premise variables allows to develop only oneemo (¢

of the system behavior to detect and isolate both actuatbr an ) and defined by

sensor faults using observer banks. In the literature, fevksy G Ae | B )
are devoted to the case of unmeasurable decision variables. rd = \"MC; | G

Nevertheless, we can cite Bergsten et al. [2002], Palm a ; P ;

Bergsten [2000], where the authors proposed the fuzzy Tha%q-]dGrf Is the transfer frony (¢) to (t) which is defined by
Luenberger observer which is an extension of the classical G = Ae | Fe (8)
Luenberger observer. The main contribution of this paper is rf Ce | Re

to propose a method for fault diagnosis of nonlinear systemg, standardH.,, framework (see figure 1), the maximization of

described by TS models with measurable and unmeasurable
premise variables using the standafg, framework developed

W, L
for linear systems. d(t) % () E > !
3. RESIDUAL GENERATOR DESIGN

ult) y(t) -

. . . . e(t)
The residual generator design for nonlinear systems destri System Q—L
by Takagi-Sugeno multiple model is addressed in this sectio +
Two cases are studied, the first case deals with TS models

where the decision variables are measurable and the senend o

concerns TS models with unmeasurable decision variables. r(t)
Residual Generat

=4

3.1 case 1: measurable premise variables

Let consider the TS nonlinear system subject to distursencpig. 1. Scheme of robust residual generation

and sensor and actuator faults modeled in (1) An observer-

based residual generator is proposed in the following form  the effect of the faultg (¢) on the residuat(¢) can be expressed
as a minimization problem. Indeed, by introducing a weigginti

: a . . paramete#V;, the problem is reduced to a minimization of the
B(t) = Y m(©)(Aii(t) + Byu(t) + Li(y(t) — §(t)) effect of the faults on the residual error
=1
) ) 3) re(t) =r(t) = Wi f(t) )
y(t) = Z“i(f)(cﬂ(t) + Diu(t)) As explained in Stoustrup and Niemann [2000] the FDI prob-
(t) = ]lvzll( (t) — 4(1)) lem depends on the selected structure of the weight paramete
r = Y W;. Indeed, the fault estimation problem is obtained when

wherei(t) € R" is the estimated state vector and) € R"/ 1/, — I and the detection problem is considered wiigp e

is the residual signal that is structured in order to be $®8Si pixn; |4 addition W, can be chosen as a dynamic pafameter.
to the faultf(¢). The matriced; € R"*™v andM € R"*™  ~qonsider the parameté¥; defined

are the residual generator gains. The objective is to debign

gains L; and M in order to minimize the transfer from the Wy = (Af Bf) (10)
disturbancesu(t) and to maximize the transfer of the faults Cr | Dy

f(t) to the residual signal(t). Let define the state estimationyy/, < S whereS is the set of stable filters which have the
errore(t) = z(t) — &(t). Its dynamic is deduced from (1) and foilowing property

(3) as follows Wil = infuer (@(Wy(jw))) > 1 (11)

é(t) = Ace(t) + Ecd(t) + Fe f(¢) @) (see Mazars et al. [2008] and Mazars et al. [2006] for more
r(t) = Cee(t) + Ged(t) + Re f(t) details). The interest of this kind of filters is that therenis



attenuation of the faults but only an amplification on all-fre Using the definitions (5) of the matrice$:, F¢, C¢ and R
guency ranges which improves the problem of fault detectioand the convex property of the weighing function, the foilagv
The detection, isolation and estimation of the faults can bgequalities are obtained from (23)

considered by an appropriate choice of the matritgsB, C XL 0 PF,—PLR, CIMT
andDy. The FDI problem is then formulated as the following 0 X7 P, By -Cf <0
multi-objective optimization problem FI'P—RIKI B P, -3 RfMT™ - D}
Obtain L; and M which minimize ay; + (1 — a)yq Where MC ~Cr MR, —Dy - (29)
a € [0 1] subject to the following constraints where
XL =ATP + P A - PLL;,C, — CFLT Py (25)
1Gry = Wil <7 (12) X7 =A7P + PAT (26)
||G’rd||oo<'}/d (13) iLWwk=1,...,r
System (4) is stable (14) In order to obtain the linear matrix inequality (15), we uke t

change of variable&’; = P L; and7; = 77 and¥ya = 3.

The theorem 1 gives an LMI method to solve the optimizatiof, the fault-free case with disturbances, a similar way, &ipg
problem and provides the residual generator gainandM.  the hounded real lemma, allows to obtain the LMI (16). The
Theorem 1.Given a positive parametere [0, 1] and a weight- block (1,1) of the the LMI (16) ensures the stability of the
ing functionW; € S. The residual generator (3) exists if thereobserver (i.e. the system (4) is stable) and the robustigessst
exist matricesP, = P{ > 0, P, = P{ > 0 and gain disturbances.

matricesK; and M and positive scalars; and?y, solution of

- o Now, in the faulty case with disturbances, the relative im-
the following optimization problem

) i - portance of minimizing the effects of the disturbances and
o p R . ays + (1 —a)Ya maximizing the effects of the faults on the residual signal
PR can be expressed as a minimization of the linear combination

s.t.
ayr + (1 — a)yqg wherea € [0 1].
X3 0 PF,-KR, CFmT s Y 0 1]
0 X2 PB -cT . ; ;
i f f 3.2 case 2: unmeasurable premise variables
FI'Pi—R[K] Bi P, —I  R{M" -D7} <0 .
MGy, ~Cp MRy - Dy -1 (15) In this section, it is assumed that the weighting functipps
be PE — K.G. CTMT of the TS nonlinear system (1) depend on the unmeasurable
ik 154 Yk k . . . .
ETP — GTKT 5 GIMT | <0 @e) stater(t) of the system. The weighting fungtlons of the residual
MCy, MGy, I generator then depend on the estimated stéteas follows
where r
X}, =ATP + PIA;, — K;C, — CT KT @7 ; . . N
g 4 o z(t) = (2)(A;2(¢) + Bu(t) + Ly t)—yl(t
E AT, o (6= 2o (@) A1) + Bu) + Lulylt) = 9(0))
X ~ (27)
Vik=1,...,r §(t) = D wi(@)(Cia(t) + Diu(t)
The gainsL; are derived from r(t) = }ff(y(t) — (1)
f— -1 J — . .

Li=P Kyi=1,..r (19) By adding and subtracting the term
and the attenuation levels are given by r

Yo = VA4 V= /s (20) > pi(E(t)) (Ajz(t) + Bjul(t))

j=1

Proof. In faulty case without disturbances the residual geny, siate equati07n of the system (1) and the term
erator is reduced to = G,ff. In order to maximize the -

effects of faults on the residual we consider the weighttable (4(1 (1) + Dot
filter W (s) defined in (10). Then the maximization problem ;MJ (2(8)) (Cj(t) + Djult))

can be formulated as a minimization _problem by solving (12)|h the output equation of (1) and by some manipulations using
Gry — Wy can be written in the following form the convex property of the weighting functions (2) the folilng

Ae 0O Fe equivalent system is obtained
Grp—Wp=| 0 A | By (21) .o ) )
Ce —Cy [ Re — Dy (1) =Y ) wa@)u (@) (Aiga () + Biu()+Ed(t) + Fi [ (1))
Let define a positive and symmetric bloc diagonal matrix =1 =1
P < B 192 ) 22 |v= 2; _E;Mi(x)uj (#)(Cija(t) + Digu(t) + Gid(t) + Rif (1))
1= J=

Using the bounded real lemma Boyd et al. [1994], the condlitio 28)

(12) is formulated as follows where

AT P+ P AT 0 P/F, cf Aij = A+ Ay, Ciy = C5 + A0y
¢ 1T e 3 Bii=B;,+AB,; D;; =D;+AD..
0 ATP2 +P2AT PzBf —CT 1) i + 179 1y J (%}
T o 4 2 r for | <0 (23 d
Fip B; P, —y#l  R; — D; an

Ce —Cy Re—Dy -1 AXij = Xi — X, Xi € {4, Bi,Ci, Di}



hL,j=1,...,r Theorem 2.Given a positive parameterand a weighting func-
After calculating the dynamic of the state estimation erloe  tion W. The residual generator (3) exists if there exist matrices

following is obtained P, =Pl >0, P, = P{ > 0and gain matrice&’; and M and
é(t) = %M e(t) + A f:lmx(t) + 5@’@’ Cz(t) + l?m £(t) (29) posl;tlive scalars, and?y; solution of the following optimization
r(t) = Crpe(t) + ACu0(t) + Goad(t) + Rus f(2) probiem _ ) i
Using the simplified notation LM PP e T T (1= a)ya
s o s.t.
l_ %::1“1“““" XY 2k 0 PR — KR, CFMT
. 0 * X2 0 PyF; ACEMT
instead of . + x X!  P3By e <0  (33)
N N -V L T
SIS il @)un () Conon T MR PD
i=1 j=1 k=1
the matrices of (29) are defined by X}, Zijk PIABi; — K;AD;, PiE; — K;G; Cf M"
r X2 P,B; PE; ACE MT
Aps = (A — L:C % —~:1 0 ADL MT | <0
ijzk;zlﬂ g o (A iCk) . . *d 51 G??\/]T
- e * * * * -1
~ L (34)
Boa= Y piftjfux [ (ABij — LyADy) (E; — L;G;) ] where
0,5, k=1 X, =A]Pi+ PiAj — K;Cy, — C{ K] (35)
~ T 2 _ AT .
Frs = Z ,Ui/lj/lk(Fi — LJRl) X; = A;P2 + P A; (36)
i,j,k=1 Xy =Ar P34+ PsAy 37)
5 r Eijkl = PlAAij — KjACik (38)
Crz = Z piftj s M Cy,
k=l Vi,jk=1,...,r
~ - - The gainsL; are derived from
Grs = i [MADy, MG, '
o Z_J_ZHM#JM[ i MGl Li=P'K, i=1,.r (39)
_ r and the attenuation levels are given by
Roz = D pilafieM Ry =V =\ (40)
1,7,k=
. r o Proof. After calculating the augmented system with =
AAyz = piftifi(AAz; — LiAC;y) [e" 2T 271" by including the filterlV; which hasz; as a
i k=1 state vector and calculating (¢t) = r(t) — r;(¢t) wherer;(t)
. " o is the output of the filte#?; (see figure 1), the proof follows
ACus = Y paftjfue MACy, exactly the steps which have been given for the proof of the
i,j,k=1 theorem 1.
= T .
d(t) = [u(®)” d)" ] Remark 1.Note that the theorem 2 is more general that the
Let define the augmented state vector= [¢7 27]7. Then theorem 1.Indeed, if the weighting functiopsof the system
from (29) The residual vectaris then given by (1) depend on measurable premise variables, the problesn giv
N e 30 in the theorem 1 can be deduced from the theorem 2 by taking
r=Grad+Grpf (30) i = j. When the premise variable is the state of the system,
where - - - if C1 = Cy = ... = C and the number of the sub-modeils
Avs AAsi | Bas is important, it might be, therefore, difficult to find a commo
Gra=|_0 A, | B, (31)  matrix P defined by
and _ _ - P=|( 0P 0 (42)
Ape ANAgs | Fos 0 0 P
Gry = z | Fa (32) satisfying the conditions of theorem 2 (see remark 6.1 irakan
Caz ACqi | Rus et al. [1998]).
As = gﬂi(x)Ai’ Fo = ;“i(x)Fi 4. ROBUST FAULT DIAGNOSIS
B, = Z“i(x) [B; E;] Due to the presence of exogenous disturbances, the residual
p signals are different from zero even in the fault-free cése.

The FDI problem is the same as the problem given in (12)-(14§1€ framework of fault detection, a threshold based on the
In order to determine the gairs and M of the residual gener- Obtained attenuation levetg; and~, is generated. An alarm
ator (27), the theorem 2 gives an LMI solution of the probler generated by comparison between the residual sigrtals
(12)-(14) extended to TS nonlinear systems with unmeataragind the threshold. A fixed threshold is determined as follows
premise variables. Jin = vap (42)



wherep is the bound ofi(t) in the measurable premise vari-the new perturbation vectai(t), thus the fault isolation is
ables case and it represent the bound(@f in the unmeasur- improved.
able premise variables. The decision logic is given by

{ |ri(t)| < Jin = no fault

[ri(©)] > Jen = fault The proposed algorithm of robust diagnosis is illustratgd b
In order to improve the fault detection, a residual generedo  an academic example. Let consider the nonlinear system (1)
be constructed for each fault separately. Each residuargeor ~ defined by
is designed to minimize the transfer frofp to r.; = r;, — [2 1 1 ] [3 2 2]
,Ae=1|5 -3 0 |,

5. NUMERICAL EXAMPLE
(43)

szfzvz: 17"'7nf- A = 1 -3 0

2 1 -8 1 2 —4

In the unmeasurable premise variables case, the systemris se

as an uncertain system. The inpuft) then appear in the 1 3 0.5
dynamic of state estimation error. The method proposedsnth 51 = [ 5 ] B = [ 1 ] By = [ 1 ] = [
paper considers the inputt) as a perturbation a&t) and by 0-5 -1 !
considering the new perturbation vecitgt) = [u(t)” d(t)T]” 01 0 1

the problem is solved. It is clear that considering the input F2= 8 (1) B2 = g 8"; ’

u(t) as a perturbation penalizes the fault detection because

the computed threshold depends on the upper bountitpf an 111 0.5 10
Using the method proposed in Casavola et al. [2008] for tinea ¢= [1 0 1} G = { 1 } R= {0 0}
systems with polytopic uncertainties wherg) is considered The weighting functiong; are defined as follows

as a perturbation to minimize separately fraift). Indeed, 1 — tanh((u(t) — 1)/10)

instead of minimizing the indega?y + (1 — a)¥,;) under the pi(u(t)) = (47)
LMI constraints, the index which has been used in Casavola po(u(t)) = 1 — ul(u(t))2

et al. [2008] described bya¥y; + b74 + ¢¥,) can be used.

An adaptive threshold can be then generated using a timene unknown input vectat(t) affects the outputs of the system
windowed rms-norm (see Casavola et al. [2008], Frank anghq its dynamic. The first component of the vecfat) is a

Ding [1997]). sensor fault and the second component is an actuator fault.

It is often considered that the fault vectp(t) has two com- "Wy iS chosen to be a diagonal of first order low-pass filters.
ponents, the first one notel,(t) represent the vector of the FOr €ach fault, a dedicated residual generator is desigsed a
faults affecting only the actuator, thus, they appear instiage mentionned above. The resolution of the problem in theorem
equation. The second component nofed) is the vector of 1 Witha = 0.9 results iny,; = 2.1426 and-, = 0.5481 for the

the faults affecting only the sensors. The output of theesyst firstresidual generator and for the second residual gesveve
is always given by chooser = 0.99, € = [0 0.08]7 andb = 10. The solution of the

- problem in theorem 1 results iy = 8.2658 and~; = 1.5780.
_ The obtained residuals are displayed on figure 2. The rdsidua
t) = i Ciz(t) + Dyu(t) + Gid(t) + R; f(t X o .
y(t) ;M (&) (Cuz(t) + Diult) + (B) + R (1)) r1(t) is sensitive only to the first component of the fault vector
a (44) (sensor fault) and the second residuglt) is only sensitive to
but in the case where the faulfs(t) do not affect the output of the second fault (actuator fault). The filtéf; allows to amplify
the system, the matriceé®; are not full rank. As pointed out in the sensitivity of the residuals to the faults.
(Stoustrup and Niemann [2000]), in this case, wh(éf]p =1 . L . .
the attenuation level; becomes greater tharthe problems in A second simulation is performed in order to estimate the
theorem 1 and 2 does not have a solution. In order to avoid tHRults. Wy is then chosen an identity matrix. The original and
problem, a perturbation term is added in the output equaison estimated faults are depicted in figure 3.
follows

2

ST o) (Con s Dt Gt [ B[ P e ———
y(t)f;m(f) (sz+Dlu+Gld+ (e R} { D (45) fault

f —— residual signal r
s 1
— threshold

1

wheree; are the matrices of distribution of the actuator faults

fa(t) in the output equation and are chosen as small as possible
However, in the context of fault isolation, this approachyma  opesfwpmniifpmrisiiimees: Hevo
generate false alarms. To improve the isolation results, we_ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
propose to add and subtract the perturbation term and make ° 2 ¢ 6 L
the added term to ensure the full rank ®f and consider the

051

subtract term as a perturbation to minimize 25 ‘ ;
r 2F +++ sensor fault f,
— - — —— residual signal .,
y(t) = > uil) (Cix + Diu+ Gid+ R; [ fa } ) (46) s - trestod
i1 Is £ R .Y
= 0.5
where .
— — 1 _ d -05
Gi=[Gibei],Ri= e R} ], d=| fa e
7? 0 2 4 6 8 10 12 14 16 18 20

where b is a positive real parameter. Using this second afFig. 2. Faults and corresponding residual signals
proach, the threshold,,, is calculated by using the bound of
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