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Abstract: This paper deals with the problem of fault tolerant control of nonlinear systems
represented by Takagi-Sugeno models subject to sensor faults. Observer-based controllers are
designed for each faulty-situation (mode). The classical switching law is replaced by a new
mechanism which avoid the switching phenomenon. The purpose is to be able to study the
stability of the global closed-loop system. This new mechanism uses the residual signals obtained
by a residual generator. A bank of observers is designed and each observer uses only one
output. Each observer based controller is designed using the estimated state provided by the
corresponding observer. Finally, the control law is constructed from these different controllers by
using smooth weighting functions depending on the residual signals and satisfying the convex
sum property. This last allows to study the stability of the closed-loop system by Lyapunov
theory and the tools developed for Takagi-Sugeno systems. LMI conditions are then proposed
to ease the design of a such fault tolerant controller.

1. INTRODUCTION

Diagnosis issues are becoming very important to ensure a
good supervision of the systems and guarantee the safety
of human operators and equipments, even if systems are
becoming more and more complex. If a fault occurs, it
is important to reconfigure the control law in order to
preserve the stability and the performances of the system.

Since many years, linear models have been largely studied
and many theories and methods have been developed for
linear systems in the fields of fault diagnosis and fault
tolerant control [Patton et al., 1989, Gertler, 1998, Korbicz
et al., 2004, Isermann, 2007, Ding, 2008]. However, the
linearity assumption is only verified around a single oper-
ating point. In order to consider a large operating range
of the system, it is important to take into account the
nonlinearities in the modeling tasks. The obtained models
are more accurate than linear ones but are obviously also
harder to deal with. Indeed, due to the complexity of
nonlinear systems, there is no general framework of study
as in the case of linear systems. Consequently, it leads to
work on specific classes of models, for example, Lipschitz
systems, LPV systems, bilinear systems, etc.

Among the several classes of nonlinear systems, Takagi-
Sugeno (T-S) models have been introduced in [Takagi and
Sugeno, 1985]. The interest of this structure is the property
of ”universal approximator”. Any nonlinear behavior can
be then approximated with a given accuracy with a T-S
model [Tanaka and Wang, 2001]. A T-S model is made
up of a set of linear submodels and an interpolation
mechanism between these submodels based on nonlinear
weighting functions. A second important property of this

kind of models is the convex sum property of the weighting
functions which allows to extend some of the tools and
methods developed for linear systems.

The T-S models have been extensively studied and in
various domains. Among them, the problems of modeling
and identification are treated in [Gasso, 2000, Orjuela
et al., 2008]. T-S models can be established using three
main principal methods. The first one is based on the
linearization of the system trajectory around different
operating points. The optimal weighting functions are
then obtained by minimizing the output error between the
real system and the model. For more complex systems, a
nonlinear analytic model is often difficult to elaborate, so
the second method relies on the black box approach. After
determining an adequate structure, the system parameters
are identified by minimizing the output error between the
real system and the T-S model. Finally, if an analytic
model exists, the nonlinear sector transformation can
be used [Tanaka et al., 1998, Tanaka and Wang, 2001].
The interest of this last method is that the obtained
model exactly represents the original nonlinear model.
This model may be difficult to study due to the dependence
of the weighting functions on the state of the system which
is often not fully measurable. However, an adequate choice
of the model rewriting can be made in order to ease its use
for control or diagnosis [Nagy et al., 2009, 2010].

The problems of stability and stabilization of nonlinear
T-S systems are studied in [Tanaka et al., 1996, 1998,
Tanaka and Wang, 2001, Chadli et al., 2002, Guerra et al.,
2006, Kruzewski et al., 2008], where different approaches
are used. Among these approaches, one can cite the use
of the Lyapunov theory and the formulation of the sta-



bility conditions in terms of linear matrix inequalities.
Quadratic stability has been studied in [Tanaka et al.,
1998], but it has been found that finding a common Lya-
punov matrix satisfying a set of LMIs is difficult or impos-
sible as well as the number of submodels increases. Then,
the polyquadratic and the non-quadratic approaches have
been developed in [Johansson, 1999, Tanaka et al., 2003].
These approaches are extended in [Bergsten et al., 2002,
Akhenak et al., 2007, 2008, Yoneyama, 2009, Ichalal et al.,
2009c,b] for observer design applied to state and unknown
input estimation. These observers are used for fault diag-
nosis in [Chen and Saif, 2007, Marx et al., 2007, Nguang
et al., 2007, Akhenak et al., 2008, Ichalal et al., 2009c, Zhao
et al., 2009]. The design of fault tolerant control for Takagi-
Sugeno systems was also studied. Let us cite the approach
of state trajectory tracking proposed in [Ichalal et al.,
2010] for actuator faults and the approach using a bank of
observer-based controllers with switching mechanism for
sensor faults in [Oudghiri et al., 2008].

In this paper, a new approach for fault tolerant control is
proposed. It is based on a bank of observers and a bank of
controllers. Each observer estimates the state of the system
from only one output, then if a fault affects a given sensor,
the controller uses the estimated states provided by the
other observers. A new mechanism to pass from faulty-
controller to others is designed by using nonlinear smooth
functions satisfying the convex sum property and depend-
ing on residual signals. Finally, the FTC is represented by
a mixture of all the local controllers and if a sensor fault is
isolated, the corresponding controller is disabled and the
FTC becomes a mixture of the local controllers using only
estimated states obtained from fault free sensors.

2. TAKAGI-SUGENO MODELING

Generally, nonlinear systems are modeled in the following
form: {

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t))

(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the
control input and y(t) ∈ R

p represents the system output
vector. The functions f and h are generally nonlinear.
This mathematical model can represent any nonlinear
behavior but its main disadvantage is its complexity and
therefore it is not always adapted to design a controller
or an observer. As explained in the previous section, the
Takagi-Sugeno model is an interesting alternative to study
nonlinear systems.

Using identification, linearization, or the so-called nonlin-
ear sector transformation, a T-S model for the model (1)
may be obtained under the form:







ẋ(t) =

r∑

i=1

µi(ξ(t)) (Aix(t) + Biu(t))

y(t) =

r∑

i=1

µi(ξ(t)) (Cix(t) + Diu(t))

(2)

where Ai ∈ Rn×n, Bi ∈ R
n×m, Ci ∈ Rp×n, Di ∈ Rp×m.

The weighing functions µi are nonlinear and depend on the
decision variable ξ(t) which can be measurable like u(t) or
y(t) or not measurable like the state of the system x(t).
In some situations (hybrid or LPV systems for example)

it can also be an external signal. The weighting functions
satisfy the convex sum property described by the following
constraints:







0 ≤ µi(ξ(t)) ≤ 1, ∀t, ∀i = 1, . . . , r
r∑

i=1

µi(ξ(t)) = 1, ∀t (3)

The multiple model structure provides a mean to gener-
alize the tools developed for linear systems to nonlinear
systems due to the properties (3) and to the linearity of
the submodels.

3. FAULT TOLERANT CONTROL DESIGN FOR T-S
SYSTEMS

3.1 Preliminary: stabilizing observer-based control

Recently, advanced methods based on Takagi-Sugeno ap-
proach were proposed to control nonlinear systems. When
the states of the system are not measured, an observer
based approach can be used. The control law then depends
on the estimated states. Let us consider the nonlinear T-S
system given by







ẋ(t) =
r∑

i=1

µi(ξ(t)) (Aix(t) + Biu(t))

y(t) =

r∑

i=1

µi(ξ(t))Cix(t)

(4)

Assume that the pairs (Ai, Bi) are controllable and
the pairs (Ai, Ci) are observable. The commonly used
observer-based state feedback control law is given by






˙̂x(t) =

r∑

i=1

µi(ξ(t)) (Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t)))

ŷ(t) =
r∑

i=1

µi(ξ(t))Cix̂(t)

u(t) = −

r∑

i=1

µi(ξ(t))Kix̂(t)

(5)
Let us define the state estimation error e(t) = x(t)− x̂(t).
Substituting the control law in both the system and the
observer, the dynamics of the closed-loop system and the
state estimation error are given by






ẋ(t) =

r∑

i=1

r∑

j=1

µi(ξ(t))µj(ξ(t)) ((Ai − BiKj)x(t) + BiKje(t))

ė(t) =

r∑

i=1

r∑

j=1

µi(ξ(t))µj(ξ(t)) (Ai − LiCj) e(t)

(6)
Or in a following compact form using the augmented state
vector xa(t) = [xT (t) eT (t)]T

xa(t) =
r∑

i=1

r∑

j=1

µi(ξ(t))µj(ξ(t))

(
Ai − BiKj BiKj

0 Ai − LiCj

)

xa(t)

(7)
The gains Kj of the controller and those Li of the ob-
server are determined in such a way to ensure asymptotic
stability of the system (7). Different LMI approaches are
provided in recent years to deal with this problem (see
for example [Tanaka and Wang, 2001, Tanaka et al., 2003,



Guerra et al., 2006]). In this work, an alternative to these
approaches is proposed. The main idea is, firstly, to use the
descriptor approach to decouple the product BiKj , this
manipulation does not need the use of congruence lemma
as used in many works. Secondly, the Lyapunov matrix P
is not assumed to be a block diagonal matrix. As proposed
in [Tanaka et al., 2007], the control law can be written in
the following form

0 × u̇(t) = −

r∑

i=1

µi(ξ(t))Kix̂(t) − u(t) (8)

Defining the augmented state x̃(t) = [xT
a (t) uT (t)], the

augmented system becomes

E ˙̃x(t) =
r∑

i=1

r∑

j=1

µi(ξ(t))µj(ξ(t))Ãij x̃(t) (9)

where

Ãij =

(
Ai 0 Bi

0 Ai − LiCj 0
−Ki Ki −I

)

, E =

(
I 0 0
0 I 0
0 0 0

)

Theorem 1. The observer based control law (5) ensures
asymptotic stability of the system (4), if there exists
symmetric and positive definite matrices P1, P5 and P9

and gain matrices Fi and Mi such that the following
constraints hold

Xii < 0, i = 1, ..., r
Xii + Xji + Xij < 0, i, j = 1, ..., r, i 6= j

(10)

where

Xij =





Ψi 0 P1Bi − FT
i

∗ ∆ij FT
i

∗ ∗ −2P9



 (11)

Ψi = P1Ai + AT
i P1 (12)

∆ij = P5Ai + AT
i P5 − MiCj − CT

j MT
i (13)

The gains of the observer based controller are derived from
the following equations

Ki = P−1

9
Fi, Li = P−1

5
Mi (14)

Proof. Consider the quadratic Lyapunov function

V (x̃(t)) = x̃T (t)ET P x̃(t) (15)

where P is given by

P =

(
P1 0 0
0 P5 0
0 0 P9

)

(16)

Due to the structure of the Lyapunov matrix P (16) and
the symmetry of the positive definite matrices P1 and P5,
it obviously follows that ET P = PT E ≥ 0. The derivative
of V is described by

V̇ (x̃(t)) = ˙̃xT (t)ET P x̃(t) + x̃T (t)PE ˙̃x(t) (17)

= x̃T (t)
r∑

i=1

r∑

j=1

µi(ξ(t))µj(ξ(t))
(

ÃT
ijP + PT Ãij

)

x̃(t)

(18)

After calculation, the negativity of V̇ (x̃(t)) is satisfied if
r∑

i=1

r∑

j=1

µi(ξ(t))µj(ξ(t))Xij < 0 (19)

where Xij is defined by (11). The negativity of (19) is
ensured if Xij < 0, i, j = 1, ..., r. This result is conservative

as often pointed in literature. To overcome this limitation,
the Polya’s theorem is applied. Knowing that

(
r∑

i=1

µi(ξ(t))

)q

= 1 (20)

where q is a positive integer. The inequality (19) is
equivalent to

(
r∑

i=1

µi(ξ(t))

)q r∑

i=1

r∑

j=1

µi(ξ(t))µj(ξ(t))Xij < 0 (21)

After calculation (i.e. by developing (21) in respect to the
weighting functions), relaxed LMI conditions are obtained.
Furthermore, if q → ∞ asymptotic necessary and suffi-
cient conditions are obtained. (For more details, see Sala
and Ariño [2007]). In theorem 1, the proposed LMIs are
obtained for q = 1.

3.2 Sensor fault detection and isolation

In the purpose of sensor fault diagnosis, the approach given
in [Ichalal et al., 2009a] is adopted. In order to isolate the
sensor faults, the residual is generated such that its ith

component is only sensitive to the ith fault. Then, for a
faulty system described by







ẋ(t) =

r∑

i=1

µi(ξ(t)) (Aix(t) + Biu(t))

y(t) =

r∑

i=1

µi(ξ(t)) (Cix(t) + Gif(t))

(22)

where f(t) ∈ R
p denotes the sensor fault, the following

residual generator is proposed






˙̂x(t) =
r∑

i=1

µi(ξ(t)) (Aix̂(t) + Biu(t) + Li(y(t) − ŷ(t)))

ŷ(t) =

r∑

i=1

µi(ξ(t))Cix̂(t)

r(t) = M(y(t) − ŷ(t))
(23)

A filter Wref is introduced to model the desired response
of the residual to the fault. The diagonal structure of
the matrix transfer function of Wref (s) allows not only
fault detection but isolation. Indeed, the analysis of each
component of the residual, i.e. ri(t) allows the isolation of
the fault affecting the sensor measuring yi(t). The design
of the residual generator aims at minimizing the difference
between R̃(s) = Wref (s)F (s) and R(s). This difference is
quantified by the L2-gain from f(t) to r(t) − r̃(t). The
block diagonal filter Wref (s) is defined by

Wref (s) =

(
Aref Bref

Cref Dref

)

(24)

the definition of Wref can take benefits from an a priori
knowledge on the frequency content of the fault. This
additional filter must satisfied the condition

σmin (Wref (s)) ≥ 1 (25)

where the function σmin(.) represents the lowest singular
value of the transfer function Wref (s). This assumption is
made in order to avoid fault attenuation. The design of
the gain matrices of the residual generator is performed
via the optimization problem given in the theorem 2.



Fig. 1. Fault detection and fault tolerant control block

Theorem 2. The robust residual generator (23) exists if
there exists symmetric and positive definite matrices P1

and P2, and matrices Ki and M solving the following
optimization problem

min
P1,P2,Ki,M

γ (26)

under the following LMI constraints
{

Xii < 0, i = 1, ..., r
2

r − 1
Xii + Xij + Xji < 0, i, j = 1, ..., r, i 6= j

(27)

where, for (i, j) ∈ {1, . . . , r}, Xij and Ψij are defined by

Xij =







Ψij 0 −KiGj CT
i MT

∗ AT
refP2 + P2Aref P2Bref −Cref

∗ ∗ −γI GT
i MT − DT

ref

∗ ∗ ∗ −γI







(28)

Ψij =AT
i P1 + P1Ai − CT

j KT
i − KiCj (29)

The residual generator gains are obtained by

Li = P−1

1
Ki (30)

and the attenuation level is given by γ.

The proof is omitted, but, for more details, the reader can
refer to [Ichalal et al., 2009a].

3.3 Fault tolerant control

In order to achieve the fault tolerant control task, an
observer bank is used. The jth observer is fed with the
input of the system u(t) and the jth output yj(t) as
illustrated by the figure 1. Then, this observer can estimate
fault-free states even if faults occur on the other sensors.
The chosen control law is then given by

u(t) = −

r∑

j=1

p
∑

k=1

hk(r(t))µj(ξ(t))K
k
j x̂k(t) (31)

where x̂k(t) is the estimated state vector provided by the
kth observer which uses the kth output. The control signal
u(t) can be viewed as a blending of the p observed state
feedback controls. The blending is ensured by the functions
hk(r(t)), which are smooth nonlinear ones satisfying the

convex sum property. The design of such functions is based
on the idea that if the kth sensor is affected by a fault,
the residual rk(t) is non zero. In this case, the function
hk(r(t)) must be close to zero in order to minimize the
influence of x̂k(t) affected by the kth fault. Contrarily
to the method proposed in [Oudghiri et al., 2008], based
on switched controllers, at each instant the controller is
formed by a smooth mixture of all the “local” controllers.
Consequently, the stability of the closed-loop system is
studied by using the classical approaches developed for
Takagi-Sugeno models.

The closed-loop system is then given by the following
equations

ẋ(t) =

r∑

i=1

r∑

j=1

p
∑

k=1

hk(r)µi(ξ)µj(ξ)
(
Aix − BiK

k
j x̂k

)
(32)

=

r∑

i=1

r∑

j=1

p
∑

k=1

hk(r)µi(ξ)µj(ξ)
(
(Ai − BiK

k
j )x + BiK

k
j ek
)

(33)

For the sake of simplicity, the time variable t is omitted.
The state estimation error between x(t) and x̂k(t) given
the kth observer is given by ek(t) and generated by the the
following differential equation

ėk(t) =

r∑

i=1

r∑

j=1

µi(ξ(t))µj(ξ(t))
(
Ai − Lk

i Ck
j

)
ek(t) (34)

where Ck
j is the kth row of the matrix Cj . Defining

the augmented state vector xkT
a (t) = [xT (t) ekT (t)], the

following closed-loop system is obtained

ẋk
a =

r∑

i=1

r∑

j=1

p∑

k=1

hk(r)µi(ξ)µj(ξ)

(
Ai − BiK

k
j BiK

k
j

0 Ai − Lk
i Ck

j

)

︸ ︷︷ ︸

Ψijk

xk
a

(35)

The stability of this system is then studied in the same
way as proposed in the section 3.1. The gains of the
controllers and those of the observers are computed by
solving the LMI conditions ensuring the stability of the
system (35).

Algorithm of FTC design

(1) Construct the residual generator providing the resid-
ual signal r(t) by solving the LMI (27), for i, j =
1, . . . , r.

(2) Construct the weighting functions hk(r(t)) depending
on the residual signals.

(3) Design of the FT controller, by solving the LMI (10)
where , Kj is substituted by Kk

j , for i, j = 1, . . . , r
and k = 1, . . . , p

Remark. An example of possible definition of the func-
tions hi is detailed in the example.

4. SIMULATION EXAMPLE

To illustrate the proposed approach and the design of the
FTC, let us consider the following system represented by
two submodels defined by



A1 =

(
−2 1 1

1 −3 0
2 1 −8

)

, A
2

=

(
−3 2 −2

5 −3 0
1 2 −4

)

B1=

(
1
5

0.5

)

, B2=

(
3
1

−1

)

, C =

(
1 1 1
1 0 0

)

Since the second state is measured, the weighting functions
are defined by

µ1(y(t)) =
1 − tanh(y2(t))

2
, µ2(y(t)) = 1−µ1(y(t)) (36)

An observer-based fault tolerant controller is designed by
following the proposed procedure. There are two outputs,
then two “local” observer-based controllers are built. A
residual generator is also designed in order to generate the
two signals detecting and isolating each sensor fault. Fi-
nally, the blending mechanism between the two controllers
is designed by defining the functions hi(r(t)) such that
hi(r(t)) is close to zero when fi(t) occurs. This can be
done by choosing the following smooth functions ωi and
the normalized weight hi, for i = 1, . . . , p

ωi(ri(t)) = exp(−ri(t)
2/σi) (37)

hi(r(t)) =
ωi(ri(t))

∑p

i=1
ωi(ri(t))

(38)

For the considered example, the controller is then written
as follows

u(t) = −

2∑

i=1

2∑

j=1

hi(r(t))µj(ξ(t))K
i
j x̂

i(t) + ref(t) (39)

with σ1 = σ2 = 0.01 and ref(t) is a given reference signal.
Different faults are considered in these simulations: the
first ones are additive constant faults, the second ones
are additive time varying faults and the last ones are
parametric faults.

4.1 Additive constant faults

The considered sensor faults are represented in the figure
3 (top). If a fault occurs on the sensor 1, the decision
mechanism minimizes the weight of the controller using
the state estimated with the first sensor, this is illustrated
by the figure 3 (bottom). The figure 2 illustrates the
effectiveness of the proposed approach.
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4.2 Additive time varying faults

Let us now consider additive time varying faults. The
figures 4 and 5 illustrate the results. The decision functions
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hi(r) select the controller which is not affected by faults
and the system preserve the desired trajectories.
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4.3 Sensor parametric faults

Finally, parametric faults affecting the sensors are consid-
ered. The faults are as follows

y1(t) = (C1 + f(t)C1)x(t) (40)

The fault occurs at the time instant 12, It can be seen
that the fault tolerant controller compensates the fault
by choosing the adequate blending control signal from
each controller with the functions hi(r(t)). The results are
depicted in the figures 6 and 7.

Remark. Note that the system is represented in the
Takagi-Sugeno’s form with measurable premise variables.
In the example, the weighting functions depend on the
second output which is affected by the fault. Even if
the weighting functions are affected by the fault, the
obtained results are acceptable. But, in order to enhance
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the performances of this approach, it is interesting to use
a T-S modeling approach which provides a T-S model
with unmeasurable premise variables (states of the system)
in order to have a possibility to minimize the effect of
faults on the weighting functions of the observers and the
controllers.

5. CONCLUSIONS

In this paper, a new approach is proposed to design a
sensor fault tolerant controller for nonlinear complex sys-
tems represented by Takagi-Sugeno model. The approach
is based on a bank of observers-based controllers, a residual
generator for diagnosis and a smooth selecting mechanism
to choose an adequate control signal to compensate the
effects of the faults on the system. The stability of the
whole system is studied by Lyapunov theory and the LMI
constraints are provided to design the gain matrices of
different block of the proposed FTC scheme. For future
works, it will be interesting to consider the case of T-S
systems with unmeasurable premise variables. It is also
interesting to study the choice of the functions hi(r(t)) in
order to design the different variables c1, c2 and σ in order
to have an optimal solution for the control signal. Finally,
the dedicated scheme for observers-based controllers may
have a problem of observability of the state from one or
different inputs, it is then interesting to study an other
bank, namely the Generalized Observer Scheme.
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