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Abstract— The problem of observer design for nonlinear difficult to achieve due to the strong conditions under which
Lipschitz systems is dealt with in this work. An emphasis is pt  these transformations exist. When these transformatiihs f
on_the maximization of_the_ admlsglble Llpschltz constant fo to solve the problem, it has also been proposed to use the
which the observer design is possible. This problem is tac&d "high qain ob " The k int in thi f ob
using a Takagi-Sugeno modeling approach. The idea is to re- . Igh gain O_ server. . € : ey point in this type of observers
write the state estimation error dynamics as an autonomous IS t0 determine the gains in order to counteract the effect of
Takagi-Sugeno system, using the Mean Value Theorem and the nonlinearities (see [22]). However, high gains peealiz
the sector nonlinearity transformation. State estimationerror  the state estimation in the presence of measurement noises.
dynamics stability is studied with the Lyapunov theory by Recently, observer design for Lipschitz systems has inten-

choosing a non-quadratic Lyapunov function and by computirg . . . . "
its variation between m consecutive samples. The interest of sively been studied since many nonlinearities encountered

these manipulations is to obtain LMI conditions admitting N practical systems satisfy the Lipschitz condition, atske
solutions for large values of the Lipschitz constant. Findy, locally. Firstly, in [22], the problem of observer desigrr fo

illustrative examples are provided in order to highlight the  |ipschitz systems is studied and sufficient conditions are
performances of the proposed approach. established to guarantee the asymptotic stability of theest
| INTRODUCTION estimation error dynamips. However, a design method is
not proposed to determine the observer gain. In [19], an
Many problems in control and monitoring need the knowljterative design approach is proposed to find the observer
edge of the state variables and the parameters of the Sygin by solving an algebraic Riccati equation. Unfortulyate
tem. However, measuring these variables is faced to twgjs algorithm may fail to provide a solution even if the
major problems. The first one concerns the technical anghservability condition is satisfied. In [20], necessary an
economical reasons, indeed, nowadays many sensors &fficient existence conditions of an observer are proposed
very expensive and bulky. The second problem is that SOM formulating them as an#, standard problem. However,
state variables are not accessible for measure. Thergfere, jt is pointed out that this standard problem may have no
problems of state estimation and observer design become §Qution because the regularity assumption is not satisfied
heart of control and monitoring design systems. This work is extended in [18] by transforming the problem
Most of the deVelOped state estimation methods are basﬂjorder to Satisfy the regularity assumption required ia th
on linear models of the studied systems [14], [10], [8].;%, optimization.
However, linear models only describe the behavior of the The main idea of the work cited above is still to compute
system around a specific operating point which leads e observer gain in order that the linear part counteraet th
degraded performances far from this particular point. feor effect of the nonlinear part; the major problem is that if
to increase the system performances the use of nonlingfe Lipschitz constant of the nonlinearity is greater than a
models seems very interesting and appropriate becausey#missible value, the design methods cannot be applied. In
allows an accurate representation of the system on a widgme recent works [23], the mean value theorem (MVT) is
operating range. Despite the accurate system descriptiqised to write the state estimation error as a linear paramete
the disadvantage of the nonlinear approach is the lack Qfrying (LPV) system. Contrarily to the other methods, the
a unified and general solution for observer design. Thgse of the MVT allows to obtain a solution, even for large
existing results are dedicated to specific classes of nealin | jpschitz constant. Many of the cited works are extended to
systems, such as Lipschitz systems or bilinear systemgiscrete time case [4], [12], [3].
Many approaches have been then elaborated, for examplen this work, the problem of observer design for Lipschitz
those based on the nonlinear transformation of the originghnlinear system is considered. An approach combining the
nonlinear system into a linear one such as using immersiogw/T and the sector nonlinearity transformation is proposed
Lie algebraic transformations, etc [6], [5], [11]. Itis ptéd  First, based on a Lipschitz assumption, the state estimatio
out in many works that this kind of approaches is vergynamics is written as a Linear Parameter Varying (LPV)
system. Secondly, the sector nonlinearity transformaisgon
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constant. Moreover, if no solution exists, it is possible t&® = PT > 0 € R™" and a positive scalar such that the
relax the conditions by using the results proposed in [18] fdollowing LMI holds
T-S SyStemS.. . o . P+ TV2| ATP—CTKT ATP—CTKT
Th_e paper is organized as follows. S_ome prell_mlnane_s are ( « P_1l 0 ) <0 (8)
detailed and the addressed problem is stated in Section II. « « _p
The transformation of a Lipschitz system into a T-S one
and the observer design for the latter are exposed in SectidA€ observer gaih is then obtained by. = PflK-._
l1l. Before concluding, illustrative examples are prowvide These approaches are based on finding the lg&norder
Section IV. that the linear part of the state estimation error dynamics
Notations. The symbol+ denotes the terms induced bycou_nteracts the_effect of the nonlinea_r part, bu_t if_ the Lip-
symmetry in a block matrix or in a matrix produgte(, for schitz constant is greater than a maxmal adm|s§|ble value,
any matriced/ andN, +MN stands foNTMN). The notation d€notedyag, the approaches fail to provide the gdin

& is used to denote thé vector of the canonical basis of N this work, a new approach is proposed in order to
RS (i.e. with all components are null, except tHe which is  Ncrease the value of the admissible Lipschitz constant by
equal to “17). ' transforming this problem into a stability relaxation ome f

T-S system, using the MVT and sector nonlinearity trans-
Il. PRELIMINARIES AND PROBLEM STATEMENT formation. The stability is then studied using a Lyapunov
_ _ _ _ ~ theory and a non-quadratic Lyapunov function. The stabilit
Let us consider the discrete-time nonlinear system givegbnditions are formulated in term of linear matrix ineqtieti
by which have a solution for large values of the Lipschitz

constant.
X(k+1) = Ax(k) + (x(k), u(k)) @) The following lemmas are used in the remainder of the

y(k) =Cx(k) (2)  paper.

Lemma 2:[17] For any matrice®) and A of appropriate
wherex(k) € R", u(k) € R™, y(k) € R™ are the system state, yimensjons, finding® = PT > 0 satisfying (9) is equivalent
input and output respectively arfdx(k), u(k)) is a function finding P = PT > 0 satisfying (10) and also to finding
of x(k) and u(k) containing nonlinearities of the system.p_ 5T " andG satisfying (11)

Assume thatf (x(k),u(k)) is globally Lipschitz or at least

locally Lipschitz in a regionZ including the origin with ATPA-Q<0 9)
- i _ T
respect tax(k) and uniformly inu(k). So, we have (Pg APP> <0 (10)
0,1 = FOg )l < Vi~ el @) o Ame N, o
.
Vxq,Xo € R"  globally Lipschitz \GA -G-G +P
{ Wxuxo € 2 locally Lipschitz (4) Lemma 3:[9] For any matricesT;, T, T3 and A of

appropriate dimensions, findifg= PT > 0 satisfying (12)
The parametey > 0 is the Lipschitz constant arifl]| is the IS equivalent to findin® = PT > 0 andG satisfying (13)

2-norm. The state observer for the system (1)-(2) is given in Ts %
the form (Tz -|—1+ATPA> <0 12)
-~ - o -~ T * *
K(k+1) = AX(K) + f(X(k),u(k)) + L(y(k) —y(k 5 3
(ket-2) = AR+ £ (3(K), u(k) + LYK = 9(K))  (5) L 13
y(k) = CX(k) (6) 0 GA P—-G-— GT

Lemma 4:(Mean value theorem) Considg(z) : R" — R.
Let a,b e R". If g(z) is differentiable on[a,b] then there
exists a vectoz &€ R" with Z<€]a,b[ (i.e. Z €]a;, by, for i =
1,...,n), such that

ol@) gt = 2@ b) (14
The goal consists on determining the observer gasuch Lemma 5:(Sector nonlinearity approach) [21], [16] Any
that the observer error dynamics is asymptotically stableonlinear functiorg(z) : R — R satisfying

(iMys-+ 6(K) = 0).

Defining the state estimation erretk) = x(k) — X(k), from
(2)-(2) and (5)-(6), the state estimation error dynamics i
given by

e(k+1) = (A—LC)e(k) + f (x(k), u(k)) — f(X(K),u(K)) (7)

< <g, Vv 15
Many approaches are proposed in the literature in order to _ 9=9(7) =g, vz (19)
cope with this problem [4], [2], [1], [19], [20]. In particat, ~can be written as
design methods based on LMI conditions are studied but it 2) = (204 (2) 16
is known that in general, the Lipschitz constgdppears in 9(2) = Ha(2)9 T H2(2)T (16)
the LMI conditions, like in the following lemma. where
Lemma 1:[4] The state estimation error converges (2) = 9-9(2 1(2) = 92 -9 (17)

asymptotically to zero if there exists two matrides R™™, g-g g-g



and the functiongs;(z) satisfy the convex sum properte. whereq < 2" and where the different components of the
H1(2)+ 2(2) =1 and 0< i (2) < 1, Vz matrices &/ are given by the parametess; ” Since the
functions h( (k)) are defined by the products of some

I11. NEW OBSERVER DESIGN ALGORITHM :
functlonsv andV?, they satisfy the convex sum property
In order to compute the gain of the observer (5)-(6), the

state estimation error dynamics (7) is transformed into a T- 9 .

S system. For that purpose, the last two terms in (7) ared M(ZK) =1, 0<hi(z(k) <1, VkeN,i=1...q

studied. Let us denote' (k) = [x" (k) uT(k)] andZ (k) = '~ (28)

[R7 (k) u"(K)]. Since the functiorf (2) is differentiable, using

lemma 4, there exists constant vectorg (k), with Z (k) From (28), it follows thatA—LC = Z hi(2(k)) (A—LC).

1zj(K) 2j(K)[ for j =1,...,n+ny, such that Then, defining'l; = 24 + A—LC, the dynamlcs of the state
estimation error (26) is written in the following form

Ij’

n n+ny a fl

f(2(k)) — f(2(K Z Z Eniling | 72 )(?d(z(k)fi(k))

q
(18) ek+1)= i;hi (z(k))Mie(k) (29)

where Note that a general sector nonlinearity approach has been
éni :( 9 i91 Il ifl 9 ) (19)  recently proposed in [16] allowing an adequate choice of
additional parameters in order to ensure the observalofity
the local models (namely, the pait4;,Ci)). In our problem,
this result can be used in order to guarantee the obsetyabili
of the pairs(<4 + A,C).
_ £/5 dfi ~- o The stability of such type of systems has been extensively
F(atk)) - f(2tk ZZE”'E”JOX (Z (k) 0k = (k) studied these recent years. Hence, useful results exibt suc
(20) as the quadratic stability obtained by a quadratic Lyapunov
Then, the state estimation error dynamics (7) obtained witfinction. Thereafter, some relaxed stability conditiome a
the system (1)-(2) and the observer (5)-(6) becomes provided with particular Lyapunov functions [13].
o The stability of the system (29) is studied, in this section,
e(k+1) = (Z Z 5”'En1(;x (k))+A_LC> &k (21) in order to determine the gaib which stabilizes the state
estimation error dynamics. We start with a result for stgbil
Since the functiorf(x,u) is Lipschitz with respect ta, its  analysis with quadratic Lyapunov function. The result isrth
derivatives are bounded extended using a new type of Lyapunov function for relaxed

which means tha€,; is a vector of dimensiom that the
component is “1” and the others are zero. Since thelast
components 0(2—2) are null, it follows

ij2 < g_f(x U< &1, XU 0yj=1,..n 22) stability conditions.
Xj
wheredj1 anddjj, are known constants. With the lemma 5,A' Classic Lyapunov function for observer design
each derivative can be written as Based on the stability analysis of the autonomous T-S
(9f| system generating the state estimation error (29), suificie
ax; ( z\/{, (23) observer existence conditions are derived in the following
il theorem.
where the funCtIOI’Wl andvﬁ are defined by Theorem 1:The state estimation error in equation (29)
ot B ot converges asymptotically towards zero if there exists a
vt (2(k) = 2500 (z(k) —dij2 V2 (2(K) = &1~ 00 (2K symmetric positive definite matrife € R™*" and a matrix
. &j1—&p &ij1—&j2 2 K € R™™ such that the following LMIs hold/i = 1,...,q
P ATP+ /TP —CTKT >
2 _ <0 (30)
SViEk) =1, 0<W(zK) <1 1=12 (25) ( PA+Pai—KC -P

The gainL of the observer is computed from= P~1K.

Using (23), the dynamics of the state estimation error can  pyqof: Consider the quadratic Lyapunov function de-
now be written as fined by

ek+1) = (A Lc:+ziJ “Z En.én,an) e(k) (26) V(e(k)) =€’ (k)Pek), P=PT >0 (31)

Following the sector nonlinearity transformation [21],evl  Its discrete time derivative is defined by

the functionw{j are factorized, it is possible to rewrite (26)

under the form AV (e(k)) =V (e(k+1)) —V(e(k)) (32)

q
Zl Z K)&nién &ji = Zh ) (27) = .Zhi(z(k))eT(k) (NP —P)e(k) <0 (33)
=1l i=



Obviously,AV (e(k)) < 0 holds if Defining Wy by

ihi (z(k)) (MTPNi —P) <0 (34) Wy = _ihi (z(k))i (40)

With the Schur complement, (34) is equivalent to the equation (29) leads to
a I e(k+1) = We(k) (41)
i;hl &9 < PIT —P > <0 (59) e(k+2) = Wip1Wie(k) (42)

wherell; is defined in (29). Finally, using the convex sum :
roperty (28) and the variable change= PL, the LMI (30

ﬁ\ tﬁeoryeS’n 1) are obtained. S ( l) e(k+m) = Wirm-1-- Phs2Wier1%ie(k) (43)
Itis known that if the number of sub-models increases themhe variation of the Lyapunov function is given by

it becomes difficult or even impossible to obtain a common mo1

matrix P satisfying the LMIs proposed in theorem 1. This AYin(Em(K)) = Z)eT(k+ j+1)Pek+j+1)

conservatism has been largely studied and some results i=

have been established to reduce it. In the next section, the m-1

approach proposed by [13] for controller design is adapted - Z)eT(kwL PPek+j) (44)

to observer design. i=

B. Multi-samples Lyapunov function for observer design With (43), the following stability condition is obtained

The main idea is to compute the variation of the Lyapunov eT (K ! PW, W

function between the samplésand k+ m wherem > 1. (k) zo(*) PPk 2 X Tk

It is proved that increasingn relaxes the obtained LMI o1

conditions. Obviously, settingr= 1 will lead to the result _ Z}(*)pjupmil X eee X ka> e(k) <0 (45)

given in the theorem 1. The observer existence conditions i=

derived with this approach are given in the next theorem.
Theorem 2:If there exists symmetric and positive definite

matricesP € R™" and matricesG € R™" and K € R™"™

such that the LMIs (36) hold, then the state estimation error

converges asymptotically towards zero.

J:

After calculation, (45) becomes

m-2

j=
+(*)melq'}k+m71 X oooo X l.|ka PO <0

B P, 0 0 0 B i
s Qo B, O 0 For¢=1,....m—1, let us defind, by
. : : Mo = (*)Pm-1%em-1 % -+ X Wipp
oo e <0 (36) m-2
* * * D, 0 + Z (%) (PJ - Pj+1) Wiy j X
* * * * Omom1 i, 1=t
* * * * * Qm-1 X W+ PP (47)
io=1,...,q/i1=21,....9 ... im-1=1,...,q From this definition, it can be seen tHat satisfies
where Fo=W MW +Po1— P (48)
Qijy1=-G— G'+PR—-P,1, i=0,....m-2 The inequality (46) can be written in the form
Qm1=-G-G" +Pn 1 WIrW—PR<0 (49)
AT AT TaT  ATeT o
P, =A'G +4;G -CK', j=0,.,m-1 Using Lemma 2, (49) is equivalent to
The observer gain is computed by _ T
(GJ:O G(Gk(gi%) r ) 0 (50)
L=G 'K (37) k —G-G'+T
Proof: Let us define the Lyapunov function candidatewith Lemma 3 and (48), (50) becomes
K (Em(k)) by R (G_Ik_pk)T 0 :
m-1 . . G¥ -G-G +R—P (GYW1) <0 (5))
Yn(Em(K)) = i;} e’ (k+i)Re(k+i) (38) 0 GWyi1 M- GG

where the matriceB are symmetric and positive definite andFinf"‘”y' repeating  this procedgr@m —2) times_, with the
Em(K) is defined by variable changeK = GL and since the functionj(z(t))

satisfy (28), the LMI (36) of the theorem 2 are obtained.
En()=[eT(K) ... e (k+m)]" (39) m



IV. ILLUSTRATIVE SIMULATIONS Assuming that only the state variable(k) is measured,

In this section, illustrative examples are studied. In thée output equation ig(k) = Cx(k) with C=[0 1 0. By
first example, the proposed approach is compared to existidgPlying the mean value theorem, one obtains

ones. The chosen criterion is the maximum value of the o af . R
Lipschitz constant for which a solution exists. In the seton F) = (%) = 5 (R (x—%) (58)
one, the observer proposed in theorem 2 is applied toh
estimate the state of a nonlinear model. where 0 0 0
of(x)
A. Example 1 ax 0 0 0 (59)
Let us consider the discrete-time Lipschitz nonlinear sys- 001 0 00Ix
tem, proposed in [12], given by (1)-(2) It is known that the Rossler's system state are bounded, as
0.2 001 it can be seen on the figure 1.
A= (0.1 0.2)’ c=( 9 (52)

and

0
Fix(k) = <a sin(xl(k))) (53)

The nonlinear functionf (x(k)) is Lipschitz with constar
y=|al. The observer design method in [12] admits a solt
only for a Lipschitz constany < 0.7916 and the approa
in [4] admits a maximal Lipschitz constapt< 0.81. Ther
if y is greater than these values, these methods fi
provide a solution to the LMI conditions. Using the M'
combined with the sector nonlinearity transformation, u.c
LMI conditions are relaxed and the existence of a solution ~ Fi9- 1. State trajectory of the Rossler's nonlinear system

could be expected for larger values of the constant Lipschit , . ,
Let us compute the Jacobian matrix &fi(k)) as follows ~ The lemma 5 is applied to the bounded state variakjes
andxs. The state estimation error dynamics can be given as

0]

o6k) [ 0 0
Cox(k) ( acogxi(k)) O ) (54) follows 4
Considering the premise variabietk) = cosx(K)) and k1) = 3 M) (A+ o ~LOJe)  (60)

calculating the matrices#, the parameterr giving the
Lipschitz constant appears, then, in the matriegsllowing  where

us to make a comparison between the cited approaches and 0 0 O
the proposed one. For example, using theorem 3 mith 2, o = 0 0 0o |,
the admissible Lipschitz constant ys= 101. These results 0.20452 0 0104

are summarized in the following table.

_ 0 0 0
Method Maximum y oy = 0 o 0 ],
[12] 0.7916 1.52x 104 0 0104
[4] 0.81
Theorem 3(m=2) 101 0 0 0
B. Example 2: Rossler's system A= o 0 0 ’
0.20452 0 -—-0.0815

In this second example, the proposed method is imple-
mented to estimate the state variables of a Rossler’'s system 0 0 0
which is a nonlinear system [15]. The discrete time version oy = 0 0 0
with sampling timeT = 0.01 of this system is given by the 152%x10% 0 -—0.0815

following equations i :
Note that it is not necessary to compute the functions

x(k+1) = Ax(k) + f(x(k)) + D (55)  h because they are not required for observer design. Only
where the matricese; are needed. With these matrices, theorem
1 _001 —001 0 3 is applied withm= 2. The states and their estimates are
_ y i _ depicted in figure 2 fok € [0 5000 and the state estimation
A= 001 1002 0 |, D=| 0 |, (56) . ) .
errors are illustrated in the figure 3 only fére [0 500
0 0 095 0.02 . . " o
in order to show the forgetting of the initial conditions.
0 The asymptotic convergence is then illustrated. The teamsi
f(x(k) = 0 (57) phenomenon can be reduced by pole clustering in a LMI
0.01x (k)xa(k) region as illustrated in [7].
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V. CONCLUSION
[17]

In this paper, a new observer design for discrete tim
nonlinear Lipschitz systems is proposed. It is based on t
transformation of the state estimation error dynamics lgy th
use of the Mean Value Theorem in order to use the sect8€]
nonlinearity transformation to derive an autonomous Takagyq;
Sugeno system. The stability of the latter is studied with th
Lyapunov theory using different Lyapunov functions in arde[21]
to obtain more relaxed stability conditions. LMI formulati
of the stability conditions are provided. The focus is made?]
on the fact that the problem of admissible Lipschitz consta
. S ba
is transformed on a relaxed stability problem. From th
examples it is clear that when the classical methods fail to
provide a solution the proposed one may have a solution by
changing the number of samples on which the variations of
the Lyapunov function are computed. In future works, the
proposed observer will be extended for uncertain Lipschitz
systems and unknown input estimation with an application
for vehicles and motorcycles state estimation.
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