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Abstract— This paper proposes a new approach of observer  In these last years, the Takagi-Sugeno (T-S) approach,
design for nonlinear systems described by a Takagi-Sugeno introduced in [27], offered an interesting tool for studyin
model. Its main contribution concerns models with premise nonlinear systems. This structure may represent or approxi
variables depending on the system states which are completely . . .
or partially unknown. This case is more difficult than when mate strongly nlonlmear .Sy_Sten_]s with a S'_mple mathemat-
the premise variables are known or measured. Indeed, in this ical representation consisting in several linear subnsodel
case, weighting functions of the observer depend on state weighted by nonlinear functions satisfying the convex sum
estimate_s an_d the s_,tate estimation error is then_ governed property. These We|gh|ng functions may depend on measur-
by a Lipschitz nonlinear system. Here, two main results 546 nremise variables (input, output of the system or aater
are established. Firstly, relaxed stability conditions are pro- . . .
vided, using a nonquadratic Lyapunov function, to guarantee variable as linear paramete_r variable (LPV) systems)nar/a
asymptotic stability of the observer. This aims to reduce the Unmeasurable premise variables (UPV) as the state of the
conservativeness compared to the existing works and enhance system. The T-S approach is interesting because it allows
the maximal admissible Lipschitz constant for which the linear  to extend some control and observation methods, previously
matrix inequality (LMI) conditions are feasible. Secondly, the dedicated to linear systems, to nonlinear ones [29].

Input-to-State S_tability concept combined to a nonquadratic Th bl f stat timati f i t
Lyapunov function are used to guarantee a bounded state ) € probiem ot state estimation of non |near_ sy; ems
estimation error which relaxes the conservativeness related to Using T-S model approach has been addressed with different
the Lipschitz constant. The robustness aspect is dealt with methods, the most of the published works considered T-S
respect to some bounded modeling uncertainties and additive models with measurable premise variables [1], [2], [171]]2
bounded p])ce[tl\lj:batlons. The stability conditions are expressed Clearly the case of measurable premise variables offers a
n fﬁggf 9I'erms.—NonIinear systems, Takagi-Sugeno systems, simpler way to generalize the methods e_llready developed
unmeasurable premise variables, LMI, observer design, Input- for linear systems. However, T-S models with UPV naturally
to-state stability. arise when they are obtained from a nonlinear system (
f(x,u)) by mathematical transformations. The most well-
|. INTRODUCTION known is the so-called sector nonlinearity transformation

Observer design for nonlinear systems is a challengingroviding an exact T-S model with no loss of information,
problem which is intensively studied in control and diaggeos in a compact set of the state space. Furthermore, the T-S
fields. Indeed, many approaches have been proposed in orgigidels with UPV may represent a larger class of nonlinear
to estimate the states of such systems. Firstly, in [30bystems compared to the T-S model with measurable premise
the author proposed a method for systems modeled byvariables [32].
linear part and a nonlinear Lipschitz one for which stapilit  However, T-S models with UPV are more difficult to
conditions were proposed. Thereafter, in [23], an iteeativdeal with than those with measurable premise variables.
algorithm was proposed to deal with the problem of observeTonsequently, few works are devoted to this class of models
design, however the method may fail even if the system igespite of their advantages. Nevertheless, we can cite [5]
observable. In [24], thél., formulation is exploited in order which is the first work dealing with the problem of observer
to provide necessary and sufficient conditions for stabilitdesign for this class of nonlinear systems. Extensionsisf th
of the state estimation error for Lipschitz systems. Thigpproach have also been published in [4], [15] and [20].
work is extended in [22] for dynamic gain observer designet us also mention [32] where a filter estimating the state
for the same class of systems. Many other works wergnd minimizing the effect of disturbances is proposed. More
also proposed, namely, sliding mode observers which afgcently, new approaches have been proposed in [10], [11],
interesting due to their insensitivity to modeling uncetti@s  [12], [13]. In [10], the differential mean value theorem is
and external perturbations [6], or high gain observer whicBombined to sector nonlinearity transformation to re-vrit
are based on a mathematical transformation of the system {i¢ state estimation error as an autonomous T-S system
using immersion techniques [7], [8]. in order to be able to apply the classical stability studies
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the establishing of relaxed stability conditions by the use(t) = x(t) — X(t) is governed by the following nonlinear
of a nonquadratic Lyapunov function, the increasing of thdifferential equation depending on the system sidtg, its
maximal admissible Lipschitz constant allowing to obtain &stimatex(t), the system inputi(t) and the state estimation
solution and finally, the combination of nonquadratic Lyaerror e(t)

punov function with input-to-state stability (ISS) to ensu &(t) = Dppe(t) + O(x, X, u) (7
the bounded state estimation error which is used to deal with

T-S systems with modeling uncertainties. The establishedhere

inequalities are stated in an adequate form for applying ®rn = Ay — PLLAC 8
; : : ; , pp ="~y b (8)

several relaxations provided in the literature as Polya’s . R

theorem [25], Tuan’s lemma [31], or the use of nonquadratic S(x, %, u) = f(X,x,u) — f(x,x,u) )

Lyapunov functions [28]. The paper is organized as follows: f(X,x,u) = Agx(t) +Bpu(t) (20)

In section Il, an observer ensuring asymptotic convergénce - ) ] ) )

proposed by using a nonquadratic Lyapunov function and th¥th B =P’ > 0. In this section, the following assumptions

Lipschitz condition. In section Ill, an approach combining®'®¢ made

nonquadratic Lyapunov function and ISS concept is proposedes Al. The functionf in (10) is Lipschitz with respect to

in order to overcome the problem related to the Lipschitz its first variable. Then, there exists a positive scajar

constant and finally, in the last section, conclusion andréut such thatd™ (x,%,u)3(x, %, u) < n2e' (t)e(t).

works are discussed. « A2. There exists positive scalgossuch that the weight-

ing functions satisfy i (X(t)| < pi.

) . ) It is not always necessary to check the assumpf@na
Let us consider a nonlinear system described by the,steriori, since the definition of the functiopsmay ensure

following T-S model this property for any value a(f).

{ X(t)=éllli(x(t))(AiX(t)+Biu(t)) (1) B Stability analysis

y(t) = Cx(t) First sufficient LMI conditions for asymptotic convergence
of the state estimation error (7) are given in the next thmore
Theorem 1:Under the assumption81 and A2, if there
exists a symmetric matrii, symmetric and positive definite
matricesR, gain matriced; and a positive scalar satisfying

the following LMI

II. ASYMPTOTIC OBSERVER DESIGN

wherex(t) € R" is the state vectom(t) € R™ is the input
vector andy(t) € R"Y represents the output vectol €
R™N B; € R™Y, C € RV*" are known matrices and is
the number of sub-models. The functiopgx(t)) are the
weighting functions depending on the state variablés
which are non measurable variables. These functions verify Mij <0, i,j=1,...r (11)
the so-called convex sum properties R_R>0 i=1. .r (12)

i\ui(x(t)) =1, 0<p(x(t)) <1 Vie{l,.,r} (2) where

o . . Mjj = S (13)
The output equation is chosen to be linear with regard the P —Al

state, which is frequently the case in practice. and

A. Observer structure

r
_ATp ApA_TT . D 2
Let us first introduce the following notations Qi =AP+RA-CL L.C+i;p.(l3. Fo) +An7l
r ror (14)
Xu = Ziﬂi(x(t))xi s Xup = Ziz Li(x(t))pj(x(t))X%; () then the state estimation error asymptotically converges
i= ==

i towards zero.
r r

r . . .
< n : o ~ ~ ” Proof: To prove the stability of the state estimation
X = i;“' (X s Xap = & J;M (DA ()X (4) error (7), let us consider the nonquadratic Lyapunov fumcti
whereX; andX;; stands for any matrices, e 4. or B;. Using V(e(t)) = €' (t)Pae(t) (15)

these notations, the system (1) becomes ] ] ) N o
The matricesP being symmetric positive definite and the

{ X(t) = Aux(t) + Byu(t) (5) Weighting functions satisfying (2), the functiovi(e(t)) is
y(t) = Cx(t) positive too. Its time derivative is given by
The proposed observer is given by

SN Ao . —1p 5
{ ;8 ;é;z(t()t) +Ba+ B La ) =310) (6) The derivative ofP; is given by

V(e(t)) = € (t)Pye(t) + e’ (t)P&(t) + e (t)Paet)  (16)

where the matrices; and the symmetric positive definite P — C ()P 17)
matricesP are to be determined. The state estimation error H i; n



SubstitutingP,;, and (7) in (16), one obtains theorem [25]. With the use of Tuan’s lemma, inequality (25)
holds if the following following inequalities are satisfied

Mi <0,i=1,...,r
{ rTzll\/lii +Mij +M;ji <0, j#i
With assumptionAl and since it is well known that the The power of this result is its significant conservatism edu
following inequality holds tion without adding slack variables to increase the number
T T T Te_1 of degree of freedom.
XYY X <X 2X+Y127¥ (19) Another less restrictive approach is given by simple ma-
for any matricesX, Y and= =57 > 0, then, for any positive nipulations of the sums in order to obtain the LMIs [25], [14]

Viet) = € (cpgﬂpp P +Pﬂ) e(t)

+ 26T (PLB(x.% ) (18) (26)

A, it follows in instance, by multiplying by} _; ti(X) = 1, one obtains
26 ()PyS(x,%,u) < An2e’ (t)e(t) +A e (t)PﬂP,;,e(t()zo) mu il\?ﬂj |+:M1j,i..<., B, ) o
Due to (2), it obviously follows Mij +Miji +Mic + Mii + Mk + My <0,
. . 7], £k J#K
Z LX) =0= Z L(X)Py=0 (21) Note also that most of relaxed stability approaches prapose
1= 1= recently are expressed as LMI with double summation in-
with assumptionA2 and (21),|5ﬂ is bounded by dexes, as the LMI given in (25). Consequently, one of the

advantages of using nonquadratic Lyapunov functions is,

P — g 1 (R) (P — r 1 ()] (R —Ry) = d (P — especially, to find an inequality with a double sum as shown
i i;u@@( Po)égllu(X)l( o) i;P( (Z)) in (25)

for any matrixPy such thatP, — Ry > 0. The matrixP is a IIl. GUARANTEED BOUNDED RECONSTRUCTION ERROR
slack variable introducing an additional degree of freedom In the first proposed approach, asymptotic convergence of
[19]. In the remaining of the pape®, is chosen to be sym- the state estimation error is sought, based on the (assumed)
metric. Then, the time derivative of the Lyapunov functiorLipschitz property of the disturbance-like term. This can
is bounded as follows only be ensured for some values of the Lipschitz constant
. T T (feasibility of the LMIs). In the second approach, the goal
Viet) < e (t)(PpaPa+Pa®pp is no longer asymptotic convergence, but only convergence
. 2 “1p. o, in a ball. In that case, the a robust observer designed
+ i;pl(P,—Po)+/\r; I+ A PaPp)e(t) for T-S systems with UPV does not need the Lipschitz
T Tp. AT T . assumption anymore. Thus, the first objective is to provide
= er (DA +Pap —CLy —1iC LMI conditions where the Lipschitz constamtis not needed.
n Zpi(Pl —Ro) +AN21+ A 1P Py)e(t)(23) The second objective is to design a robust observer with re-
is spect to modeling uncertainties. For that purpose, a baunde
The negativity ofV/(e(t)) is ensured if estimation error convergence is proven instead of asyieptot
one, by considering ISS.

Tp. A~ _CT1 T _ 1.
'A:ﬁpu +PuAr—CLy —LC A. Bounded estimation error
+ Zm(PI_PO)_A'_)\r’2| +)rlpﬁpﬂ <0 (24) Let us consider the system (5) and the corresponding
i= proposed observer (6). The state estimation error dynasiics
This inequality can be expressed as follows using the Sch@iven by (7). Consider also the same nonquadratic Lyapunov
complement function defined in (15) as well as the following assumptions
Mag <O (25) « A3. The inputu(t) is bounded
) ) ) o _ « A4. The system is input-to-state stable (IS&g. the
whereM;; is defined by (13). Since the weighting functions  gystem state(t) is bounded for bounded inpui(t)
satisfy (2), the inequality (25) holds if the LMIs (11) are , a5 There exists positive scalagssuch that the weight-

satisfied, which achieves the proof. u ing functions satisfy i (X(t)| < pi.
C. Relaxed LMI formulation of stability conditions of theThese assumptions lead to a bounded perturbation term
state estimation error O0(x,X,u). For the sake of clarity, this term will be noted

Note that the negativity of (25) is largely studied in theé(t) in the following. One can note that the Lipschitz

literature. An intuitive and first result on stability of T-S aisumonn of the fungyorf(x,fx,rllj) IS no Ior)ger.needed.

systems is the negativity of each term of the sum (25)T e convergence conditions of the state estimation erer ar
leading to the result presented above. This result may he ve stablished in the theorem 2.
conservative; relaxed stability conditions have been igiexy Definition 1: [26] The system (7) is said to be ISS if there

using various approaches like Tuan’s lemma [31] and Polya&xists a.#".% function 3 : R" xR — R and a.#" function



o : R — R such that, for each inpu(t) satisfying||d(t)||,, <
o and each initial conditiom®(0) € R", the trajectory of (7)
associated witle(0) and (t) satisfies

le)ll2 < B(leO)ll2,t) +a(ldt)]o), vt (28)

Theorem 2:Under the assumptiors3, A4 andA5, given
a scalara > 0, if there exists a symmetric matrii,

symmetric matrice®, gain matriced; and positive scalars

y andc solution to the following optimization problem

min
Po,R Li.y.c 4
under the constraints

R >l (29)

BR—R>0i=1...r (30)
Si<0i=1,..r

Si+Zij+Zi <0, #i (31)

Zij +Zji + Sk =k + S+ =k <0,
i#], i1#k j#k

whereZjj is defined by

then the error dynamics (7) is ISS with respecdid) and
satisfy the following inequality

ol < |/ S e@ e %+ [ a0l @9

r
ATP +PA —LC-CTLT +i§lpi(P. ~P)+aP; P
Pi —cl
(32)

c—ay<0 (33)

The gainsL; of the observer are obtained directly and the From this equation, it can be concluded thd}dft)

attenuation level of the transfer frod(t) to e(t) is , /55

and a, ¢ are positive scalars aney(t) = [eT(t) &' (1)]T.
If the inequality (31) holds, the inequalify;; < 0 is also
satisfied, then, it follows

V(et) < —ae’(t)Pie(t)+cdT(1)d(t)  (39)
< —aV(et))+cdT(1)d(t) (40)
Multplying both sides of (40) b and integrating from 0

to t, one obtains
t
V(e(t)) gV(O)e*erc/e’“(t*S) 15(s)12ds
0

Due to the fact that the weighting functiops(X) satisfy
(2), then it is easy to derive that, for aeft) € R", it holds

(41)

aille(t) 3 <V(e) < az|le(t)[|5. Ve(t) eR"  (42)
where
;= 1n£i|2r/\min (R) ay = lrggf)\max(P.) (43)

and whereAmin(M) (resp. Amax(M)) denotes the minimal
(resp. maximal) eigenvalue of the matfix. The inequality
(41) becomes

_ c
ar|e(t)|5 < azlle(0)[3e ‘“+5H5(t)Hi (44)
which leads to
2_ 02 —at, C 2
< £ _
le(t)[|2 < ar [e(0)[[2e" + aa 6% (45)

Finally, using the square root on equation (45), on obtains

o)l < |/ S e@e 2+ [ a0l @)

lo=0
then ||e(t)||, — O whent — . Moreover, in the presence

Proof: Let us consider the nonquadratic Lyapunowf the perturbationd(t), the error|[e(t)[|, is bounded by

function defined by (15). Following the same steps as i

(16)—(18), one obtains
V(et) = € () (PhuPu+Paag+Fu) eft)
+ 2eT(t)Py6(t) (35)
With (22)—(21), the equality (35) is bounded as follows

V(et)) < e(t) (CDLT,LA‘ Py +Pa®pp +_ipi(P| - PO)) e(t)
+2€ (t)Py6(t) (36)

From assumptionA3, A4 andAb, the termd(t) is bounded.
The inequality (36) is equivalent to

V(e(t)) < €l (t)Zaea(t) — ae’ (V)Pze(t) +c8T (1)3(t) (37)

r
== ¢EﬂPﬂ+Pﬂ¢ﬂﬂ+i§1pi(H—Po)+aPﬂ Py
P —cl
(38)

ag; 16(t)] at steady state. As a conclusion, the ISS is

proven with the inequality (46). The radius of the conver-
gence regiorD is upper bounded b O%al 10(t)]]oo-

Note that the size of the convergence Betlepends on
the selected matriceB and the parameterg andc. The
set D should be made as small as possible to ensure a
good accuracy of convergence. The choiceagfc and R
providing a small set of convergence is not obvious because
the problem is nonlinear. In the next, a technique is progpose
to transform the nonlinear problem into a linear one leading
to LMI constraints. Let us consider the following inequglit

C
Vaa =V

wherey is a positive scalar to minimize. From (29) and (30),
it follows that a1 > 1, then using (47) and for a given> 0

the LMI constraint (33) is obtained, which ends the proof.
[ ]

Remark 1:The second result aims to provide LMI con-

ditions without needing any calculation of the Lipschitz

constant. Then, this last has a larger domain of appli¢gbili

(47)



compared to the first one. The price to pay is the loss of IV. SIMULATION EXAMPLE

asymptotic convergence which is replaced by the ISS. Due to space limitation, only the second approach is

Remark 2:The proposed results are defined by a doublgiystrated and discussed. Let us consider the Rosslettichao
sum inequalities represented by system [16] written as (1) with two sub-models £ 2)

defined as follows
Mpp <0 (48) _10 10 0

This form is adequate to use recent results on conservatism Al=| 28 -1 —Ximax |,
reduction, namely the Polya’s theorem. It is easy to derive 0 Xgmax —0.37
these conditions (as given in the theorem 2) [14], [25]. ~10 10 0

Remark 3:Note that the results are easily extended to A= 28 -1 —x¢mn |,
systems with nonlinear output equation given by 0 ximn -0.37

r
0
y(t) i;/u.(x)c.x(t) (49) B —B,— 8 Cc= < 8 é 2)

B. Robustness with respect to modeling uncertainties The premise variable iz,(t) which is bounded by min

The observer proposed in the last section guarantee® 8693 andx;max= 13.8164. The weighting functions are
bounded estimation error. It is easy to prove that this olaser defined by

is robust for some bounded modeling uncertainties. Indeed,

.. . . . . . Xl(t) — X1 min
the uncertainties can be included in the disturbance-tke t Hu(X(t)) =
obtained from the fact that the weighting functions of the T- xl max— xl r&';‘
model are unmeasurable. Consider the uncertain system: Ho(X(t)) = Zmax” ML)
_ X1 max— X1 min
{ X(t) = (Au+DAL)X(E) + (By +ABy)u(t) (50) Thetime derivatives ofi(x), i€ {1,2} are bounded bp; =
y(t) = (C+AC)x(t) p2=4.5. The Lipschitz constant of the terdift) is computed
with the observer (6), the state estimation error obeysdo tfgnd given byn = 17335. The approach given in [3] does
; : - not provide any solution to this example, since solution can
differential equation . . .
only be obtained for Lipschitz constant smaller than729
&(t) = Dppe(t) + O(x,X,u) (51) The LMiIs given in the Theorem 1 of the present paper are
L also unfeasible for the Lipschitz constanpt 17335. On the
where®y; = Ay — P "L;C and other hand, solving the optimization problem given in the
Theorem 2 with SEDUMI (YALMIP), the LMIs are feasible
o(x,Xu) = (Au — Ay +DA, — Pﬁ*lLﬁAC) X(t) for o = 10 and the attenuation level of the transferdagf)
+  (Bu—Bg+0By)u(t) (52) towardse(t) is \/y = 0.0549 which is greater tha a%l

The initial conditions of the system and the observer are
Note that the state estimation error (51) has the same forq0) = [30 —3 10T andx{0) = [0 10 4Q".The result of the
than the one given in (7). All the uncertain terms are inctlidestate estimation is depicted on figure 1.
in the disturbance-like ternd(x,X,u). This fact allows to

use the result obtained in the last section and hence 3

prove the ISS fromd to the state estimation error. The < fgi

only difference concerns the bound of this perturbatiomter g ‘

Then by minimizing the effect of(x, %, u) a robust observer o T 15 2 25 3 35 4 45 °

is obtained with respect to some modeling uncertaintie: < 0/\/
However, note that in the presence of modeling uncertaintie ™
the proposed technique is conservative because it does |

take into account the distribution matrices of the uncertai = /\\J\
parameters. o

Remark 4:The ISS is also preserved if any bounded ad R A
ditive disturbanceso(t) andv(t) respectively affect the state
dynamics and measurement equations. The té(mﬁ u) Fig. 1. State variables (blue line) and their estimates (&shed lines)
can include the disturbances as follows

2.5
t(s)

A second simulation is performed with a centered mea-
S(x,%,u) = (Ay— Ag) x+ (By —Bp) u+ w+ pﬂ*lLﬂV (53) surement noise(t) in the range—0.33 and 033. This case
corresponds to a perturbation terdft) given in equation
For boundedw(t) andv(t), then d(x, X, u) is still bounded. (53) with w(t) = 0. The norms|e(t)||, and /y||(t)||,, are
In addition, the proposed observer can take into accoudepicted in the figure 2 and illustrates that the norm of the
uncertainties on the premise variables. error is always less thagy/y||(t) ||,
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Fig. 2. Time evolution ofi|e(t)|| (red) and,/¥||8(t)|| (blue) with noised [14]
measurement

[15]
V. CONCLUSIONS AND FUTURE WORKS

In this paper, some advances in observer design for Takagi-
Sugeno systems with UPV are proposed. A focus has begs]
made on some problems, namely, the conservativeness of
the existing results on observer design for T-S systems
with UPV and the maximal admissible Lipschitz constanti7]
allowing to solve the LMI constraints, and the robustness
with respect to bounded modeling uncertainties and bounded
additive perturbations. The first problem is dealt with byz1s]
using a nonquadratic Lyapunov function and asymptotic
stability conditions are provided. For the second problem,
the nonquadratic Lyapunov function and ISS concept areg]
combined. The obtained results are expressed in terms as
optimization problems under LMI constraints. For future[zo]
work, it is interesting to extend the results for both statd a
unknown input estimation for possible application in fault
diagnosis and fault tolerant control of nonlinear systemé?l
An extension of some recent results will be considered for
LMI conditions independent from derivative bounds of thd22]
weighting functions.
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