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Abstract— A new actuator fault tolerant control strategy  with nonlinear functions satisfying the sum convex propert
is proposed in this paper for nonlinear Takagi-Sugeno (T-S) allows to obtain the global behavior of the system described
systems. The control law aims to compensate the actuator in a large operating range. One can cite some works in the
faults and allows the system states to track a reference . ; :
states corresponding to the output of the system in the fault FTC field for nonlinear systems, for example, in _[5]' the_
free situation. The design of such a control law requires authors gave a method for actuator faults by using their
the knowledge of the faults, this task is achieved with a estimations, for nonlinear descriptor systems with Lifizch
proportional integral observer (PIO). The robust stability of  nonlinearities. In [18], a method which requires only thelffa
the system with the fault tolerant control law is analyzed isolation was proposed for T-S systems. It was based on a
with Lyapunov theory and L. optimization. Sufficient stability N .
conditions are obtained in terms of linear matrix inequalities bank of obs_erver based (_:ontrollers. A sv_wtchmg _mechanlsm
(LMIs). The gains of the FTC are obtained by solving these IS then designed depending on the obtained residuals. More

LMlIs. A simulation example is finally proposed. recently, Witczak proposed in [23] an FTC strategy based on

. ~a reference model for open-loop T-S systems.
Index Terms—Takagi-Sugeno systems, state and fault esti- g haner is dedicated to the design of a fault tolerant
mation, PI observer, Lyapunov stability analysis, linear matrix

inequality. control strategy for nonlinear systems described by Takagi
Sugeno models. This approach is an extension, the work pro-
I. INTRODUCTION posed in [23], to T-S systems where the weighting functions

It is well known that the classical control strategies canndf the T-S system are affected by faults. Thus, the premise

take into account faults affecting a system. Then, if a faulf@riables of the reference model are not the same as those
occurs in any component of the system, the stability angf the faulty system. The main idea is to re-use the nominal

the performances of the system cannot be ensured W-&Rntrol input developed in fault-free case for which two

such control laws. These last years, the problem of fadierms, related to the occurred fault and the tracking error

tolerant control design has been treated and many sigrtificdffi€CtOry between the system and a reference model, are
results have been proposed in [14], [2], [16], [L7]. Thes@dded. The reference trajectory is provided from a feferenc
works follow two different ideas. The first one, called paesi MCdel representing the system without faults. In additibe,
FTC, considers possible fault situations and take them infgP"trol law requires the knowledge of the state of the system
account in the step of control design which is similar t¢nd the faults affecting it. For that purpose, a Pl obserer i
the robust control design. It is pointed out in many work&/S€d to estimate simultaneously these signals.

that this strategy is usually restrictive. The second agpgino
is the active FTC, which requires a fault diagnosis bloc
providing on line informations on fault detection, isotati Let us consider a nonlinear system described by a T-S
and estimation. The reconfigurable control block uses thesgucture

informations in order to deal with unforeseen faults, to

kA. Takagi-Sugeno structure for modeling

maintain the system stability and to provide an acceptable o(t) = > pi(€(1))(Aix(t) + Biu(t))
system trajectory even in faulty situations. ! (1)
The active fault tolerant control has been developed essen- y(t) = > wi(€(1)Ciz(t)

tially for linear systems [6], [19], [17], [14] and descript
linear systems [12]. Clearly, linear models do not oftewherexz(t) € R™ is the state vectow(t) € R™ is the input
represent accurately physical systems due to the presemneetor, andy(t) € R? represents the output vectod,; €

of nonlinear behavior. A new representation that combinédR™*" B, € R**™ (C; € RP*™ and D; € RP*™ are known
simplicity and accuracy of nonlinear behaviors was intromatrices. The functiong;(£(t)) are the weighting functions
duced, initially, in [20] and known under the narfiakagi- depending on the variablegt) which can be measurable
Sugeno (T-S) models The idea is to consider a set of (as the input or the output of the system) or non measurable
linear sub-systems. An interpolation of all these sub-rf®devariables (as the state of the system). These functionfyveri

_ the following properties
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Obtaining a T-S model (1) can be performed from difNote that, the weighting functions depend on a faulty premis
ferent methods such as linearization of a nonlinear modeériable £;(¢). Indeed, if these last are the input of the
around some operating points and using adequate weightisgstem, which can depend on the statg(t) in closed-
functions. It can be also obtained by black-box approachésop, or the outpuy;(t), necessarily the fault affects these
which allow to identify the parameters of the model fromvariables.
input-output data. Finally, an interesting approach teawbt  The goal is to design the control law;(t) such that the
a model in the form (1) is the well-known nonlinear sectosystem state: ;(¢) converges toward the reference state)
transformations [21], [15]. Indeed, this transformatidows given by the reference model (1). The control strategy is
to obtain an exact T-S representation of a general nonline#lustrated in the figure 1.
model with no information loss, in a compact state space.

Thanks to the convex sum property of the weighing
functions (2), it is possible to generalize some tools de-
veloped in the linear domain to the nonlinear systems.
This representation is very interesting in the sense that it
simplifies the stability study of nonlinear systems and the
design of control laws and observers. In [3], [7], [10], the
stability and stabilization tools are inspired from thedstu
of linear systems. In [1], [13], the authors worked on the
problem of state estimation and diagnosis of T-S fuzzy
systems. The proposed approaches in these last papers rely
on the generalization of the classical observers (Luemverg
Observer [11] and Unknown Input Observer (UIO) [4]) to
the nonlinear domain.

Fig. 1. Fault tolerant control scheme

B. Notations and preliminaries

Let us consider the matriX;; with appropriate dimension,  We propose the following structure for the control law
and p;(.) nonlinear functions satisfying the convex sum 2 .
il ng uplt) = —f() + K(olt) = 3,(0) +u(®)  (9)

property. The following notation is defined
roor The matricesX is determined in order to ensure the stability
Yee = YD ml€®)n(E(t)Yi (3) of the system even if faults occur and to minimize the state
i=1j=1 error betweencs(t) andz(t). By analyzing the structure of
uy(t) given in equation (9), the estimation of the state vector
x¢(t) and faultsf (¢) are required. This task is performed via

S _ _ . a Proportional-Integral observer simultaneously esfimgat
ZZuz(ﬁ(t))uj (E@)Y; <0 “) the state and the faults of the system.

Lemma 1:([22]) The inequality

_ ==t Let us consider the Pl observer
holds if r
Yii < 0,i=1,..r (5) zp(t) = Zﬂi(ff(t))(Aiff(f) + Bi(uy(t) + f(1))
2 - o ol X
Lemma 2:(Congruence) Let two matrice® andQ, if P ORE Z“i(gf(t)) (Hai(ys (t) = 95 (1))
is positive definite and iQ is a full column rank matrix, e
than the matrixQ PQ” is positive definite. So(t) = (A NCd o (1
Notation 1: For any square matrid/, S(M) is defined ) ;/h(ff( ))Cids (2)
by : 11
S=M+MT (7 4

In fact if £¢(¢t) is assumed to be known, the observer
Il. FAULT TOLERANT CONTROL OF T-SFUZZY SYSTEMS  weighting functions depend on the same premise variable
A. FTC strategy as the system (8).
Let us consider the T-S reference model without faults ' "€ Output error between the system (8) and the observer
described by (1). The faulty system is given by (10) is written by

Tp(t) = XT: wi(€r(t)) (Aizp(t) + Bi(ug(t) + £(1))) yr(t) = 95(8) = > mil€(8)Ciealt) (12)
it i=1
yr(t) = ; pi(§(t))Cia s (t) where

8 Ci=[Ci 0] 13)



_ . _ xf(t)}
colt) =)~ aal0). walt) = | F) | a9
The dynamic of the trajectory tracking

e(t) = z(t) — x4 (t), obeys to the differential equation

ét) = Zm(f(t))(&x(tHBz'U(t))
— () (Aszp(t) + Bi(uy(t) — f(1))) (15)
ét) = Zm(ﬁf(t))(Aie(t)—Bi(f(t)+f(t))
— BiK(as(t) — #5(t) + 3(0) (16)
= Zm(ﬁf(t))((Ai — BiK)e(t)
—  Liea(t)) +0(t) (17)
where
Li=( BiK B;), eq=1u4(t)—2.(t) (18)

r

8(t) = (ra(€(8)) — i€ (8))(Asa(t) + Bu(t))  (19)

=1

Assume thatf(t) = 0, the system (8) can be written in
augmented form

Falt) = 32 uEr(9) (Aiaralt) + Brug (1))
! A (20)
yr(t) = _:lui(ff(t))Cixa(t)
where
i A; By 5 B;
Ai:<0 0)’Bi:(0>’ (21)

The pairs(4;, C;), 4,5 =1,.

.., are assumed to be observ-

It can be external known variable which is not affected by
faults. Indeed, in [23], the authors proposed a method for

error this case with application to the three tank system in open-

loop control. In this case(t) = £(t) and the equation (23)
becomes

é(t) =D > €O (Et) Aye(t)  (26)

i=1 j=1

In Takagi-Sugeno modeling, it is often considered that the
premise variables(t) is the input, the output or the state
of the system, which are necessarily affected by faults.
Consequently¢ (t) # £¢(¢). In addition if £,(¢) is measur-
able the state estimation error and the state tracking error
are expressed by (23). Now, with this considerations, when
&(t) = u(t) and & (t) ur(t), the termd(t) does not
converge to zero ifr;(t) converges to the reference state
x(t) butif £(¢) = y(t) ands(t) = y¢(¢), the tolerant control
allows the convergence af(¢) to z(t) and ys(t) to y(t),
then the termy(¢) converges also to zero which gives better
results compared to the case whéfe) = u(¢). The same
problem can appear if the output is also affected by fauits. |
these cases, the fault tolerant control design aims to nieim
the difference between;(t) andx(t) and to minimize the
L4 gain of the transfer frona(¢) to the state tracking error.

B. Fault tolerant control design

The gainsK, Hy; and Hy; are determined by solving
the optimization problem under LMI constraints given in
theorem 1.

Theorem 1:Let be i a positive scalar. The system (23)
that generates the state tracking er@r) and the state and
fault estimation errore,(¢) is stable and theC,—gain of
the transfer fromé(t) to e,(t) is bounded if there exists
symmetric and positive definite matrice§;, X,, P, and
P5, matricesH; and K and positive scalars solution to the
following optimization problem

able (or at least detectable). The state and fault estimatio

errore, (t) = x4 (t) — £, (t) between the system (20) and the X, er%ink i 7 st (5)-(6) (27)
observer (10)-(11) evolves following the equation CoTw
where
. ~\ : 8 v, -BM 0 I, X
o) = &) (Ep (1) ((Ai — HiC))eal(t é ¢ n 1
alt) = 32 3 ms )rs €1 0) ( Dea(t)) S S G
The concatenation of the state tracking trajectory errdr an * * * =3I, 0
the state and faults estimation errors allows to write, from * * * * —Ip
(16) and (22), a new augmented system written by -
- U, = AX,+X AT - B, K- K'B]' (29)
e(t) = > mal€r )iy (&5 (1) Aye(t) +To(t)  (23) Ay = PRA+ATP,-H,C;—CIH  (30)
= M=(EK X) (31)
where x 0
1
o x(t) —xp(t) = (I, X = ( 0 X ) (32)
e(t)_(a:a(t)ia(t) , I'= 0 (24) 2

The controller gains and those of the observer are computed

. A; — BiK —L; from
Ay = ! ¢ ~ P 25
’ < 0 A — H;C;j ) (29) Hy; 15
Remark 1:One can note that in the previous section, the \ A2
weighting functions depend on the premise variapjét). K = KX;! (34)



and the attenuation level of the transfer fraift) to e(t) is

obtained by
T =V7 (35)

Proof: The gainsH; and K are obtained by stability
analysis of the system described by the differential equati
(23) by using Lyapunov theory with a quadratic function.

Let us chose the following quadratic Lyapunov function
V() = etrpPet), P=PT>0 (36)
where P is chosen as follows
(P 0
P = < 0 P ) (37)

The time derivative of the functiof’ (é(¢)) is given by

VE®) = Y &) (& )e(t)” Mié(t)
i=1 j=1
+ 2¢(t)TPT6(t) (38)
where
R Al B _Plf/i B
where
A; = PLA; — P B,K (40)

andS is a function defined in the notation 1.
In addition, the termi(t) depends onc(t), u(t) which

X5 is symetric and positive definite matrix. The following is
then obtained

T T E’L 7L2X I’I’L

SN il m) |+ XAzx 0 | <0

i=1 j=1 * * —’YQI
(47)

where
= = AP +PAT - B,KP!

— P'KTBT + PP (48)
Aij = PQAi+AzTP2 *P2Hiéj 7C~VJTH1'TPQ (49)

The negativity of (47) imposes the negativity &f; which
allows to use the following property

(X +pA5H " Ay (X +pAst) <0

< XA X < —p (X + X7 - uzA;jl (50)
(47) can then be bounded in the following way
Yee = D0 mil& (M) (&)Y <0 (51)
i=1 j=1
where
Ez’ _Lj,X 0 In
x  —2uX ol 0
Yij = 52
I * * Aij 0 (52)
* * x =2

After the use of the lemma 1, in order to express the
inequalities in linear form with respect t8,*, P,, K, and

are bounded, then it is also bounded. So, the objective is 19;, the following change of variables are used

minimize the£,-gain of the transfer frond(¢) to the state
tracking errore(t), this is formulated by

:wg;:: v, 6@, #0

(41)

X, =P, K=KX;, Hy=PH; 7=+* (53)
In addition
LiX=B,(K I)X=B(K X») (54

Then, we are seeking to ensure asymptotic convergenggen, the relaxed stability conditions satisfying the raite

toward zero ifé(¢) = 0 and to guarantee a boundéd-gain
if 6(t) # 0. This problem can be formulated as follows

V(E®) +et)e(t) —v26)To(t) <0 (42)

After some calculation, the inequality (42) is negativehié t
following conditions hold

Nee = > > ma&r(t)ps (§r(£)N:; < 0

(43)
i=1 j=1
where
S(Ai) + In -PL; P,
N = 0 S (ngzli - P2Hiéj> 0 (44)
P 0 —2I
with the congruence lemma, we obtain
Nee <0 WNee W <0 (45)
where
Pt 00 1
w=[ 0 x o ,X:<P6 . ) (46)
0 o0 I 2

tion level of theL, gain of the transfer from(¢) to the state
tracking errore(t), given in theorem 1, are obtained. ®

Remark 2: The assumption that the fault signal is constant
over the time is restrictive, but in many practical situatio
where the faults are slowly time-varying signals, the eatim
tion of the faults is correct, and the proposed FTC scheme
can be applied. In the case where the faults are not slowly
time-varying or constant, the Proportional Integral Oleer
(PIO) can be replaced by a Proportional Multiple Integral
Observer (PMIO) (see [8]). Such is able to estimate a large
class of time-varying signals which satisfies the following
assumption

f(q+1) -0 (55)

The principle of this observer is based on the estimation of
all the ¢** derivatives of the signaf(t). This observer can
also be extended to the case whefé™? is bounded.

Ill. SIMULATION EXAMPLE

To illustrate the proposed actuator fault tolerant control
strategy for T-S systems with measurable premise variables
affected by the faults, we proposed two academic examples.



A. First case :£(t) = u(t)
Consider a T-S system described by

T
— ()
= _estimated f(t)

zy(t) = 21 pi(u(t)) (Aizy(t) + Biug(t) + Bif(t))
ys(t) = Cay (1) oo e
(56) ,
where
-2 1 1 -3 2 =2
A = 1 -3 0 , Ay = 0 -3 0 ,
2 1 -8 5 2 —4

0 1 = : 5 B = = »
Bi=|11], Bo=11 ,cz[léH
1 0

The weighting functions depend on the inpu(t) which is

Fig. 2. Fault and its estimates (top) Nominal control and FT@tt¢m)

State estimation errors

the nominal control of the system in the fault-free casey the o
are defined by (u(t)) = (1 —u(t))/2 and pa(u(t)) =1 — 05
w1 (u(t)). To apply the proposed FTC strategy, the following 04
reference model is considered 02
#(t) =Y palu(t)) (Ase(t) + Byu(t)), y(t) = Ca(t) o : 5 5 2‘0 S .
=1
(57) 05 ‘ ‘ State lracl‘dng errors
The fault f(¢) is time varying and defined as follows
[ —u(t) t>10
f(t) - { 0 t < 10 (58) o
To increase the observer performances, a pole assignment
is performed in{z|R(z) < —14,|z] < 20} in order to -0, : = = - = »
enhance the convergence speed of the state estimatios error
toward Zero and to reduce the osc"latory phenomenon Flg 3. State estimation errors (tOp) State tracking errbthm)
Solving the optimization problem under LMI constraints
in theorem 1 withy = 20, results in the following matrices ' ‘ = gl:::zg;:gzgiﬁr:r:cxlmgitelF‘TC
9484 5947 _11.03 45.34 08 ;\‘/ ________ .. State of the system with F:C’_\ 1
Hy=| 3005 —2975 |, Ho=| 3158 —33.25 |, ° \/““’ R
31.54 —43.02 17.80 —26.25 % s 10 15 0 % 0
Hy = [ 337.82 —356.67 |, Hyy = [ 338.57 —353.93 | | | | | |

K =1[65179 4.9204 1.2659 |, v =0.4721 o

The proportional-integral observer provides the state and  —°°
fault estimation which errors are depicted in the figures 3 05
(top) and fault estimation in the figure 2 (top). The figure 3
(bottom) shows the state trajectory tracking errors betwee
the state of the system and those of the reference model
with the FTC control lawus(t) depicted in the figure 2
(bottom). Finally, the figure 4 compares, in the one handkig. 4. Comparsion between states of the system without, fsialtes with
the nominal control input (in fault-free case) and the nevault and nominal control and states with fault and FTC
control input when fault occurs, and in the other hand the
states of the system controlled by the FTC control law
those of the reference model and those of the system with Second caseg(t) = y(t)
faults but without FTC control law. Even if a fault occurs, In this subsection, the previous system is considered, but
the system trajectory follows the trajectory of the refeen with weighting functions depending on the first component
model which represents the trajectory of the system in thaf the system output vector. The figure 5 illustrates theestat
fault-free situation. Thus, the FTC control law compensatesstimation errors (top) and the state tracking errors goxt
the fault and allows a normal functioning of the system irt is clear that the use of weighting functions depending
the presence of faults. on the output of the system provides better results than

-0.5




the case where they are depending on the control inpuf2]
This is due to the fact that the system is only affected by
actuator faults and the perturbation tefift) converges to
zero wheny(t) converges to the referenggt). But in the

previous simulation, the terd(¢) did not converge to zero,
in the presence of fault, becausét) # u(¢) which leads

to p;(u(t)) # wi(ug(t)). As a conclusion, considering the [s]

(4]

State estimation errors
1 T T

(6]

(7]

(8]

State tracking errors
05 T

(9]

[10]

05 L L L L L
0 5 10 15 20 25 30

Fig. 5. State estimation errors (top) State tracking errbogtgm) [11]
problem of fault tolerant control of T-S systems with actuat [12]
faults, it is more interesting to use the output of the sysism

a premise variable. However, in the simultaneously ocegrri [13]
actuator and sensor faults, better results are obtainedibyg u

the state of the system as a premise variable, this is more
difficult and general case but the obtained state erroringck [14]
is less than ones obtained above, first results on this poth5
are submitted in [9]. ]

V. CONCLUSION [16]

This paper is dedicated to the design of an active fault tol-
erant control law for nonlinear Takagi-Sugeno fuzzy systemy, 4
A reference model is used and the proposed control law is
then designed for guaranteeing the convergence of thesst e
of the system to the states of the reference model even |f8 ]
fault occurs. This control law uses the nominal control inpu
developed for the system in fault-free case and two addition!19]
terms related to the estimated fault and the trajectorkingc g
error. The stability is studied with the Lyapunov theory and
L2 optimization. The LMI formalism is used in order expres%21
stability conditions in term of linear matrix inequalities ]
Future works will be devoted to the study of the case when
the weighting functions depend on unmeasurable variabi#?!
as the system state. Indeed, the interest of this case is the
possibility to deal with simultaneous actuator and sensor
faults. In addition, it is interesting to develop the FTC woh  [23]
law by taking into account modeling uncertainties and some
external perturbations.
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