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Abstract— This paper presents a new method to synthesize
observers for continuous time nonlinear systems described
by Takagi-Sugeno (TS) model with unmeasurable premise
variables. First, convergence conditions are established in order
to guarantee the convergence of the state estimation error. These
conditions are given in Linear Matrix Inequality (LMI) for-
mulation. Secondly, a classical Proportional Integral Observer
(PIO) is extended to the considered nonlinear systems in order
to estimate the state and the unknown inputs (UI).

I. I NTRODUCTION

Recently, monitoring and diagnosis of nonlinear systems
took an important consideration. Indeed, the unceasing de-
mand in terms of reliability and performance of systems has
led to the use of nonlinear models to represent the systems.
Therefore obtained models are very complex and the task
of model-based fault diagnosis becomes more difficult to
achieve.

In recent years, the proposed Takagi-Sugeno structure
introduced in [1] provides a better representation of nonlinear
systems in terms of mathematical complexity. Thus, highly
nonlinear behaviors can be represented by simple models.
The Takagi-Sugeno model structure, sometimes known as
multiple model structure, is based on the decomposition of
the operating range in several zones (operating points) and
the behavior of the system in each zone is represented by
a local linear model. Thanks to an appropriate choice of
the weighting functions, the blending of the local models
can efficiently represents the overall behavior of the system.
The contribution of each local model is quantified by the
weighting functions. These nonlinear functions verify the
property of convex sum. This important property allows the
extension of some analysis and design tools developed in the
linear system framework to nonlinear systems, which is the
main interest of the Takagi-Sugeno structure for the study of
nonlinear systems.

Concerning the state estimation of nonlinear systems rep-
resented by Takagi-Sugeno models, we can cite [2], [3],
[4], where the authors extended the Luenberger observer
and the unknown input observer (UIO) to nonlinear systems.
These two observers are used in [4] and [5] to develop an
observer bank based method to detect and isolate actuator
and sensor faults. Another model-based approach to fault
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detection for Takagi-Sugeno models is proposed in [6], where
the authors use the techniques of sensitivity constraints to
detect and isolate the faults. In the works cited above,
the authors assume that the weighting functions depend on
measurable premise variables (like the input or the output
of the system). The case where the weighting functions
depend on unmeasurable premise variables (like the state of
the system) is studied in [7], [8], [9]. The authors propose
an observer which is an extension of the Thau-Luenberger
observer [10] and they give a methodology for synthesizing
the gains of the observer using an LMI approach.

Section II gives some notations used in the paper, presents
the Takagi-Sugeno model structure and finally states the
studied problem. Sections III and IV present the main results
concerning the design of observer to estimate the state
and the unknown inputs of nonlinear systems described by
Takagi-Sugeno models. Before concluding, simulation results
are given in section V.

II. N OTATION AND PROBLEM STATEMENT

In this paper the following notations are used

r

∑
i=1

r

∑
j=1

r

∑
k=1

µiµ jµk ⇔
r

∑
i, j,k=1

µiµ jµk

In is ann×n identity matrix.

A. Takagi-Sugeno model

Let us consider the TS model representation of a nonlinear
system given by







ẋ(t) =
r
∑

i=1
µi(ξ (t))(Aix(t)+Biu(t))

y(t) =
r
∑

i=1
µi(ξ (t))(Cix(t)+Diu(t))

(1)

wherex(t) ∈ R
n is the state vector,u(t) ∈ R

m is the control
input andy(t)∈R

p is the measurement output.Ai, Bi, Ci and
Di are real known matrices with appropriate dimensions. The
weighting functionsµi are nonlinear inξ (t) and satisfy the
convex sum property:







r
∑

i=1
µi(ξ (t)) = 1 ∀t

0≤ µi(ξ (t)) ≤ 1, i ∈ {1, ...,r} ∀t
(2)

The premise variableξ (t) can depend on measurable signals,
for example the inputu(t) or the outputy(t) of the system
(this situation is largely studied in the literature), or on
unmeasurable signals like the statex(t).



B. Problem statement

Takagi-Sugeno model has proved its effectiveness in the
study of nonlinear systems. In the case of bounded non-
linearities, TS structure not only provides a mathematically
equivalent form, but also highlights each of the linear sub-
models [1]. In the field of stability analysis and stabilization,
many works, such as state feedback control [2], [11], [12],
[13], [3] have been developed and applied in a lot of practical
situations. The problem of state estimation has also been
studied in order to design state feedback control laws and
to design a residual generator in order to detect and isolate
faults in the system and to reconfigure the control laws in
the presence of faults [4], [7].

In the field of state estimation and diagnosis of nonlinear
systems using multiple model approach, the most of the pub-
lished works considered TS models with measurable premise
variables [4], [14]. It is clear that the choice of measurable
premise variables offers a good simplicity to generalize the
methods already developed for linear systems. But in the
case where the premise variables are not measurable, the
problem becomes very hard. However, this formalism is very
important both in the exact representation of the nonlinear
behavior and in diagnosis method based on observer banks
to detect and isolate actuator and sensor faults. Indeed in
this case, the use of measurable premise variables requires
to develop two different multiple models, the first using the
input u(t) in the premise variable to detect and isolate sensor
faults, and the second using the output of the system for
actuator faults. Considering unmeasurable premise variables
allows to develop only one multiple model of the system
behavior to detect and isolate both actuator and sensor faults
using observer banks. In the literature, few works are devoted
to the case of unmeasurable premise variables, nevertheless,
we can cite [7], [15], [8], where the authors proposed the
fuzzy Thau-Luenberger observer which is an extension of
the classical Luenberger observer. The main contribution of
this paper is to propose a method to estimate not only the
state variables, but also the unknown input affecting the
system. Our approach allows to reduce the conservatism,
linked to Lipschitz conditions, of the existing works [7] and
relax the conditions under which the method is applicable.
The proposed method is given for more general T-S systems
because it includes the case where the output of the system
is nonlinear with regard to the state of the system.

III. STATE ESTIMATION IN THE UI FREE CASE

Consider the system (1) with weighting functions depend-
ing on the state of the system:







ẋ(t) =
r
∑

i=1
µi(x(t))(Aix(t)+Biu(t))

y(t) =
r
∑

i=1
µi(x(t))(Cix(t)+Diu(t))

(3)

For the sake of simplicity,(t) will be omitted in the sequel.
Let us denote the estimated state by ˆx. By adding and

subtracting the term
r
∑

i=1
(µi(x)−µi(x̂))(Aix+Biu), we obtain

the following equivalent system:

ẋ =
r

∑
i=1

µi(x̂)(Aix+Biu)

+
r

∑
i=1

(µi(x)−µi(x̂))(Aix+Biu) (4)

As explained in the previous section, thanks to (2), we have:
r

∑
i=1

(µi(x)−µi(x̂))Xi =
r

∑
i, j=1

µi(x)µ j(x̂)(Xi −X j) (5)

whereXi ∈ {Ai,Bi,Ci,Di}. Let us define the following nota-
tions:

∆Xi j = Xi −X j (6)

Then the system (4) can be transformed into the following
system:

ẋ =
r

∑
i, j=1

µi(x)µ j(x̂)((A j +∆Ai j)x+(B j +∆Bi j)u) (7)

The output equation can similarly be written in the following
form:

y =
r

∑
i,k=1

µi(x)µk(x̂)((Ck +∆Cik)x+(Dk +∆Dik)u) (8)

The system (7)-(8) is written like an uncertain system but
the considered “uncertain terms”∆Xi j are completely known
and are constant matrices.

The proposed observer is given by the following equations:






˙̂x =
r
∑
j=1

µ j(x̂)(A j x̂+B ju+G j(y− ŷ))

ŷ =
r
∑

k=1
µk(x̂)(Ckx̂+Dku)

(9)

Taking (2) into account, the equations (8) can be multiplied
by ∑r

i=1 µi(x) to obtain:

˙̂x =
r

∑
i, j=1

µi(x)µ j(x̂)(A j x̂+B ju+G j(y− ŷ)) (10)

ŷ =
r

∑
i,k=1

µi(x)µk(x̂)(Ckx̂+Dku) (11)

The weighting functionsµi(x) formally appear in (10-11)
although they are not available sincex is not known. But
it should be noticed that since no term is indexed oni in
(10-11) the computations of ˆx and ŷ are still feasible.

The state estimation error is given as follows:

e = x− x̂ (12)

Using (7), (8), (10) and (11), the dynamics of the state
estimation error is:

ė =
r

∑
i, j,k=1

µi(x)µ j(x̂)µk(x)(Φ jke+Γi jkx+Si jku) (13)

where:
Φ jk = A j −G jCk

Γi jk = ∆Ai j −G j∆Cik

Si jk = ∆Bi j −G j∆Dik



i, j,k ∈ {1, ...,r}

Let us define the augmented state ˜x = [eT xT ]T which
dynamics is described by the augmented system:

˙̃x =
r

∑
i, j,k=1

µi(x)µ j(x̂)µk(x)
(
Mi jkx̃+Bi jku

)
(14)

z = Hx̃ (15)

where:

Mi jk =

[
Φ jk Γi jk

0 Ai

]

, Bi jk =

[
Σi jk

Bi

]

, H = [In 0] (16)

The goal then is to determineG j to guarantee the stability
of (14) while attenuating the effect of the inputu(t) on z(t).

Theorem 1: The system (14) is stable and theL2-gain
of the transfer fromu(t) to z(t) is bounded, if there exists
symmetric matricesP1 and P2, matricesKi and a positive
scalarγ̄, such that the following conditions hold:





X1 jk Θi jk Ψi jk

ΘT
i jk X2i P2Bi

ΨT
i jk BT

i P2 −γ̄I



 < 0, ∀(i, j,k) ∈ {1, ...,r}3 (17)

where:

X1 jk = AT
j P1 +P1A j −K jCk −CT

k KT
j + I (18)

X2i = AT
i P2 +P2Ai (19)

Θi jk = P1∆Ai j −K j∆Cik (20)

Ψi jk = P1∆Bi j −K j∆Dik (21)

The gains of the observer are derived from:

G j = P−1
1 K j (22)

and the attenuation level is :

γ =
√

γ̄ (23)

Proof: Considering the following quadratic Lyapunov
function:

V (x̃) = x̃T Px̃, P = PT
> 0 (24)

its derivative with regard to time is given by:

V̇ (x̃) = ˙̃xT Px̃+ x̃T P ˙̃x (25)

By substituting˙̃x (14) in (25), we obtain:

V̇ (x̃) =
r

∑
i, j,k=1

µi(x)µ j(x̂)µk(x)(x̃
T (M T

i jkP

+ PMi jk)x̃+ x̃T PBi jku+uT
B

T
i jkPx̃) (26)

The goal is to attenuate the effect of the inputu(t) on
z(t). So, in order to guarantee the stability of (13) and the
boundedness of the transfer fromu(t) to z(t):

‖z(t)‖2

‖u(t)‖2
< γ, ‖u(t)‖2 6= 0, γ > 0 (27)

we consider the following criterion:

V̇ (x̃)+ zT z− γ2uT u < 0 (28)

Substituting (26) and (15) in (28), we obtain:
r

∑
i, j,k=1

µi(x)µ j(x̂)µk(x)(x̃
T (M T

i jkP+PMi jk)x̃

+x̃T PBi jku+uT
B

T
i jkPx̃)+ x̃T HT Hx̃− γ2uT u < 0

(29)

The convex sum property of the weighting functions allows
to write:

r

∑
i, j,k=1

µi(x)µ j(x̂)µk(x)(x̃
T (M T

i jkP+PMi jk)x̃

+x̃T PBi jku+uT
B

T
i jkPx̃+ x̃T HT Hx̃− γ2uT u) < 0

(30)

which can be written in the matrix form:
r

∑
i, j,k=1

µi(x)µ j(x̂)µk(x)r̃
T Ξi jk r̃ < 0 (31)

where:

Ξi jk =

[
M T

i jkP+PMi jk +HT H PBi jk

BT
i jkP −γ2I

]

r̃ =

[
x̃
u

]

A sufficient condition for (29) to hold is:
[

M T
i jkP+PMi jk +HT H PBi jk

BT
i jkP −γ2I

]

< 0 (32)

∀(i, j,k) ∈ {1, ...,r}3

Let us choose the following structure for the matrixP:

P =

[
P1 0
0 P2

]

(33)

Using the definition ofMi jk andBi jk given in (16), and the
use of the changes of variables:

K j = P1G j (34)

and
γ̄ = γ2 (35)

we obtain from (32) the LMI conditions expressed in (17)
in the theorem 1.

In many practical situations, the output is given by a
set of sensors measuring a subset of the state variables.
Assuming that the location of the sensors does not depend
on the operating point, we haveD1 = D2 = ... = Dr = 0 and
C1 = C2 = ... = Cr = C. The output of the system is then
given by:

y = Cx (36)

In this case, the system (14) becomes:

˙̃x =
r

∑
i, j=1

µi(x)µ j(x̂)(Mi j x̃+Bi ju) (37)

z = Hx̃ (38)



where:

Mi j =

[
A j −G jC ∆Ai j −G jC

0 Ai

]

,Bi j =

[
∆Bi j

Bi

]

(39)

The simplified version of theorem 1 is then given in the
corollary 1.

Corollary 1: The system (37) is stable and theL2-gain
of the transfer ofu(t) to z(t) is bounded, if there exists
symmetric matricesP1 and P2, matricesKi and a positive
scalar γ̄, such that the following conditions hold∀(i, j) ∈
{1, ...,r}2:





X1 j Θi j Ψi j

ΘT
i j X2i P2Bi

ΨT
i j BT

i P2 −γ̄I



 < 0 (40)

where:

X1 j = AT
j P1 +P1A j −K jC−CT KT

j + I (41)

X2i = AT
i P2 +P2Ai (42)

Θi j = P1∆Ai j −K jC (43)

Ψi j = P1∆Bi j (44)

The gains of the observer are derived from:

G j = P−1
1 K j (45)

and the attenuation level is given by:

γ =
√

γ̄ (46)

The performances of the observer can be increased by
eigenvalue assignment in a specific region in the complex
plane. For nonlinear Takagi-Sugeno systems, it is necessary
to assign all of the eigenvalues of the local observers. The
performance objectives tackled in the present paper are
twofold: a decay rate to ensure the fast convergence of
the observer and the limitation of the imaginary part of
the eigenvalues of the observer to reduce the oscillatory
phenomenon. Consequently, the eigenvalues of the system
generating the state estimation error are clustered in an
LMI region S(α,β ) which is the intersection between a
circle with center(0,0) and radiusβ and a strip with real
part smaller than−α. The corollary 2 gives the conditions
of convergence of the observer taking into account the
eigenvalues assignment.

Corollary 2: The system (37) is stable and the poles of
system generating the state estimation error lie inS(α,β )
and theL2-gain of the transfer fromu(t) to z(t) is bounded,
if there exist symmetric matricesP1 andP2, matricesKi and
a positive scalar̄γ, such that the following conditions hold:





X1 j Θi j Ψi j

ΘT
i j X2i P2Bi

ΨT
i j BT

i P2 −γ̄I



 < 0,∈ {1, ...,r}2 (47)

[
−βP AT

j P−CT KT
j

PA j −K jC −βP

]

< 0 (48)

AT
j P+PA j −CT KT

j −K jC +2αP < 0 (49)

whereX1 j, X2i, Θi j and Ψi j are defined in corollary 1. The
gains of the observer are derived from:

G j = P−1
1 K j (50)

and the attenuation level is given by:

γ =
√

γ̄ (51)
Proof: The proof is similar to the proof of the

theorem 1 using the results of eigenvalues assignment
published in [16].

IV. STATE AND UNKNOWN INPUT ESTIMATION

In this section, the problem of state and unknown input
estimation is considered by extending the PI observer de-
veloped for linear systems to the case of TS systems with
unmeasurable premise variables. Firstly time, the unknown
input is assumed to be a constant signal. The convergence
conditions are obtained by using the results given in the
previous sections. Secondly, the derivative of the unknown
input is assumed to be bounded. The convergence conditions
are given in the LMIs formulation. For the sake of simplicity,
the output of the considered systems is linear with respect to
the state, the input and the unknown input (C1 = ... =Cr =C,
D1 = ... = Dr = D andF1 = ... = Fr = F).

Let us consider the following system:






ẋ =
r
∑

i=1
µi(x)(Aix+Biu+Ei f )

y = Cx+Du+F f
(52)

Assumption 1: The following assumption holds :

ḟ (t) = 0 (53)

Let us consider the augmented statexa = [xT f T ]T , then the
corresponding augmented system is:







ẋa =
r
∑

i=1
µi(x)

(
Ãixa + B̃iu

)

y = C̃xa +Du
(54)

where:

Ãi =

[
Ai Ei

0 0

]

, B̃i =

[
Bi

0

]

, C̃ =
[

C F
]

Applying the same method used to obtain (7)-(8), the system
(54) can be transformed into the following equivalent form:

ẋa =
r

∑
i, j=1

µi(x)µ j(x̂)
(
(Ã j +∆Ãi j)xa +(B̃ j +∆B̃i j)u

)
(55)

where:
∆Xi j = Xi −X j, Xi ∈

{
Ãi, B̃i

}

The PI observer is given by:






˙̂xa =
r
∑
j=1

µ j(x̂)
(
Ã j x̂a + B̃ ju+ G̃ j(y− ŷ)

)

ŷ = C̃x̂a +Du
(56)

where:

G̃ j =

[
GP j

GI j

]



The estimation error is given byea = xa − x̂a, and its
dynamics is given by:

ėa =
r

∑
i, j=1

µi(x)µ j(x̂)((Ã j − G̃ jC̃)
︸ ︷︷ ︸

Φ j

ea +∆Ãi jxa +∆B̃i ju) (57)

=
r

∑
i, j=1

µi(x)µ j(x̂)(Φ jea +

[
∆Ai j

0

]

x

+

[
∆Ei j

0

]

f +∆B̃i ju) (58)

=
r

∑
i, j=1

µi(x)µ j(x̂)

(

Φ jea +

[
∆Ai j

0

]

x+ Γ̃i jω
)

(59)

where:

Γ̃i j =
[

∆Ẽi j ∆B̃i j
]
, ω =

[
f
u

]

, ∆Ẽi j =

[
∆Ei j

0

]

Let us define the augmented state ˜x = [eT
a xT ]T , then the

augmented system is:

˙̃x =
r

∑
i, j=1

µi(x)µ j(x̂)








[
Φ j ∆Ai j

0 Ai

]

︸ ︷︷ ︸

Mi j

x̃+

[
Γ̃i j

B̄i

]

︸ ︷︷ ︸

Ri j

ω








(60)

z = Hx̃ (61)

where:
B̄i =

[
Ei Bi

]

The system (60) has the same form than (37). The objective
is to assure the stability of (60) while minimizing the
influence ofω(t) on the estimation errorz(t). By using the
corollary 1, we obtain the sufficient convergence conditions
of the PI observer (56).

Theorem 2: The system (60) is stable and theL2-gain
of the transfer fromω(t) to z(t) is bounded, if there exists
symmetric matricesP1 and P2, matricesG̃i and a positive
scalar γ̄, such that the following conditions hold∀(i, j) ∈
{1, ...,r}2:







X1 j Θi j P1∆Ẽi j P1∆B̃i j

ΘT
i j X2i P2Ei P2Bi

∆ẼT
i jP1 ET

i P2 −γ̄I 0
∆B̃T

i jP1 BT
i P2 0 −γ̄I







< 0 (62)

where:

X1 j = ÃT
j P1 +P1Ã j −L jC̃−C̃T LT

j + I (63)

X2i = AT
i P2 +P2Ai (64)

Θi j = P1∆Ãi j (65)

The gains of the observer are derived from:

G̃ j =

[
GP j

GI j

]

= P−1
1 L j (66)

and the attenuation level is given by:

γ =
√

γ̄ (67)

The Proportional Integral Observer (PIO) can be applied only
in the case where the unknown input is constant or slowly
time varying. In order to estimate other types of unknown
inputs, the Proportional Multiple Integral Observer (PMIO)
is proposed in [17].

V. SIMULATION RESULTS

To illustrate the effectiveness of the proposed methods,
numerical examples are given in this section. The first one
concerns the state estimation and the second one uses the
PI observer in order to estimate the state and the unknown
inputs.

A. State estimation

Consider the system described in (1) defined by:

A1 =





−2 1 1
1 −3 0
2 1 −2



 , A2 =





−3 2 −2
5 −3 0
1 2 −4





B1 =





1
0.5
0.25



 , B2 =





1.5
3
2



 , C =

[
1 1 1
1 0 1

]

The weighting functions are defined by:
{

µ1(x) = 1−tanh(x1)
2

µ2(x) = 1−µ1(x) = 1+tanh(x1)
2

(68)

By using the corollary 2 with eigenvalues assignment in an
LMI region defined byα = 0.1 andβ = 10, we obtain the
following matrices:

L1 =





−1.556 8.556
6.919 −8.956
−1.684 6.472



 , L2 =





−1.556 8.556
6.919 −8.956
−1.684 6.472





An output noise bounded by 1 is added to the output of
the system in order to simulate measurement noise. The
simulation results in the figure 1 illustrate the convergence
of the state estimation error in the UI free case.
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Fig. 1. State estimation errors



B. State and unknown input estimation

In this section, actuator and sensor faults are added to the
previous example. Their respective influences are defined by
the following matrices:

E1 =





1 0
0 0
1 0



 , E2 =





1 0
1 0
1 0



 , G =

[
0 1
0 1

]

The simulation results of the UI estimation obtained by the
PI observer are displayed on figure 2. Solving the LMIs in
the theorem 2 may cause slow dynamics of the observer,
so an eigenvalue assignment in the same region as the
previous simulation allows to increase the performances of
the observer.
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Fig. 2. Unknown inputs

VI. CONCLUSION

This paper addresses new methods to design observers
for nonlinear systems described by Takagi-Sugeno models
with unmeasurable premise variables. The first observer is
devoted to the estimation of the state of a given system and
the second observer which is an extension of the classical
Proportional Integral Observer (PIO) developed for linear
systems, provides both the estimation of the state variables
and of the UI. The proposed approach is based on some
transformations using the convex property of the sum of
the weighting functions. The convergence of the estimation
errors are studied using the second method of Lyapunov
and theL2 techniques, and the conditions which guarantee
the convergence of the estimation errors are obtained in the
Linear Matrix Inequalities (LMIs) formulation. The future
works will concern, on the one hand, the application of
the proposed methods to develop a scheme for diagnosis of
nonlinear systems, and on the other hand, the convergence
conditions will be studied in order to reduce its conservatism,
by using for example, other kinds of Lyapunov functions.
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