State and unknown input estimation for nonlinear systems desched by
Takagi-Sugeno models with unmeasurable premise variables

Dalil Ichalal, Bendt Marx, Jo& Ragot, Didier Maquin

Abstract— This paper presents a new method to synthesize detection for Takagi-Sugeno models is proposed in [6], @her
observers for continuous time nonlinear systems described the authors use the techniques of sensitivity constramts t
by Takagi-Sugeno (TS) model with unmeasurable premise yetact and isolate the faults. In the works cited above
variables. First, convergence conditions are established in order L . ’
to guarantee the convergence of the state estimation error. Ese the authors assume that_ the Wel_ghtlng fl_Jnctlons depend on
conditions are given in Linear Matrix Inequality (LMI) for- measurable premise variables (like the input or the output
mulation. Secondly, a classical Proportional Integral Observer of the system). The case where the weighting functions
(P10) is extended to the considered nonlinear systems in order depend on unmeasurable premise variables (like the state of
to estimate the state and the unknown inputs (Ul). the system) is studied in [7], [8], [9]. The authors propose
an observer which is an extension of the Thau-Luenberger
observer [10] and they give a methodology for synthesizing

Recen.tly, monitoring gnd djagnosis of nonlinear systéMge gains of the observer using an LMI approach.
took an important consideration. Indeed, the unceasing de-gection Il gives some notations used in the paper, presents
mand in terms of reliability and performance of systems hage Takagi-Sugeno model structure and finally states the
led to the use of nonlinear models to represent the systemg,died problem. Sections Il and IV present the main result
Therefore obtained models are very complex and the taglnceming the design of observer to estimate the state
of model-based fault diagnosis becomes more difficult tgng the unknown inputs of nonlinear systems described by

achieve. . Takagi-Sugeno models. Before concluding, simulationitesu
In recent years, the proposed Takagi-Sugeno structugge given in section V.

introduced in [1] provides a better representation of rmogar

systems in terms of mathematical complexity. Thus, highly Il. NOTATION AND PROBLEM STATEMENT
nonlinear behaviors can be represented by simple models.
The Takagi-Sugeno model structure, sometimes known as
multiple model structure, is based on the decomposition of d

the operating range in several zones (operating points) and i; Zlkzl“i“j“kc)_ _ ﬂ“i“j“k

the behavior of the system in each zone is represented by e He

a local linear model. Thanks to an appropriate choice of I, is ann x n identity matrix.

the weighting functions, the blending of the local models _

can efficiently represents the overall behavior of the syste A- Takagi-Sugeno model

The contribution of each local model is quantified by the Let us consider the TS model representation of a nonlinear
weighting functions. These nonlinear functions verify theystem given by

property of convex sum. This important property allows the

I. INTRODUCTION

In this paper the following notations are used

r r r

extension of some analysis and design tools developed in the X(t) = i Hi(E()) (AX(t) +Bju(t))
linear system framework to nonlinear systems, which is the i=1 1)
main interest of the Takagi-Sugeno structure for the stidy o y(t) = ¥ i(&(1)) (Cix(t) +Diu(t))

nonlinear systems. =1

Concerning the state estimation of nonlinear systems reptherex(t) € R" is the state vectonj(t) € R™ is the control
resented by Takagi-Sugeno models, we can cite [2], [3input andy(t) € RP is the measurement outpu;, B;, C; and
[4], where the authors extended the Luenberger observey are real known matrices with appropriate dimensions. The
and the unknown input observer (UIO) to nonlinear systemsveighting functionsy; are nonlinear iré (t) and satisfy the
These two observers are used in [4] and [5] to develop aonvex sum property:
observer bank based method to detect and isolate actuator

;
and sensor faults. Another model-based approach to fault Y Hi(EM)=1 Wt @
i=1
This research was supported by the TASSILI No. 07 prograneuktDU O<up (E(I)) <lie {1> 2] r} vt
grant 714. . . .
All the authors are with the Centre de Recherche enlhe premise variablé(t) can depend on measurable signals,

e e N U e e LIVESt. for example the inputit) or the outpuy(t) of the systern
{blal il.ichalal, benoit.narx, jose.ragot, (this situation is largely studied in the literature), or on

di di er. maqui n}@nsem i npl - nancy. fr unmeasurable signals like the state).



B. Problem statement the following equivalent system:

Takagi-Sugeno model has proved its effectiveness in the
study of nonlinear systems. In the case of bounded non- X = Zl“' (AX+Bju)
linearities, TS structure not only provides a mathemdsical
equivalent form, but also highlights each of the linear sub- + Zi(p,( ) — i (X)) (Aix+ Bju) 4)
models [1]. In the field of stability analysis and stabilinat i=
many works, such as state feedback control [2], [11], [12]as explained in the previous section, thanks to (2), we have:
[13], [3] have been developed and applied in a lot of prattica r
situations. The problem of state estimation has also been Zl( i (X) %)X = Z LX) (R) (% —X;)  (5)
studied in order to design state feedback control laws and i= ij=1
to design a residual generator in order to detect and iso'%erex, € {A,B;,C;,D;}. Let us define the following nota-
faults in the system and to reconfigure the control laws i . ’
the presence of faults [4], [7]. AXii = X — X (6)

In the field of state estimation and diagnosis of nonlinear ! )
systems using multiple model approach, the most of the pufhen the system (4) can be transformed into the following
lished works considered TS models with measurable premisgstem:

variables [4], [14]. It is clear that the choice of measueabl r A
premise variables offers a good simplicity to generalize th X= z i (X) 1 (R) ((Aj + AA;j)x+ (Bj +ABjj)u) (7)
methods already developed for linear systems. But in the =1

case where the premise variables are not measurable, e output equation can similarly be written in the follogin
problem becomes very hard. However, this formalism is verform:

important both in the exact representation of the nonlinear r

behavior and in diagnosis method based on observer banks Y = Z Hi (%) Hi(X) ((C + ACik)X + (D +ADi)u) - (8)

to detect and isolate actuator and sensor faults. Indeed in k=1

this case, the use of measurable premise variables requidse system (7)-(8) is written like an uncertain system but
to develop two different multiple models, the first using thehe considered “uncertain termAX;; are completely known
inputu(t) in the premise variable to detect and isolate sens@and are constant matrices.

faults, and the second using the output of the system for The proposed observer is given by the following equations:
actuator faults. Considering unmeasurable premise \agab

allows to develop only one multiple model of the system i (%) (AjX+Bju+Gj(y—y))

behavior to detect and isolate both actuator and sensds faul ! 9)
using observer banks. In the literature, few works are @glot y (%) (CiX + Dyu)
to the case of unmeasurable premise variables, nevesheles
we can cite [7], [15], [8], where the authors proposed thé_ak'ng (2) into account, the equations (8) can be multiplied
fuzzy Thau-Luenberger observer which is an extension & Xi—1Hi(X) to obtain:

x>

]

M=M=

k=1

the classical Luenberger observer. The main contribution o r

this paper is to propose a method to estimate not only the = Y HOM;(X) (AR+Bju+Gj(y—y)  (10)
state variables, but also the unknown input affecting the L1=1

system. Our approach allows to reduce the conservatism, . r

linked to Lipschitz conditions, of the existing works [7]dan y= | le“ i () Hi(X) (Cic& + Dicu) 11

relax the conditions under which the method is applicable. o T _
The proposed method is given for more general T-S systeni§e weighting functionsu;(x) formally appear in (10-11)
because it includes the case where the output of the syst@lthough they are not available singeis not known. But

is nonlinear with regard to the state of the system. it should be noticed that since no term is indexedidn
(10-11) the computations of andy are still feasible.
Ill. STATE ESTIMATION IN THE Ul FREE CASE The state estimation error is given as follows:
Consider the system (1) with weighting functions depend- e—x—R (12)
ing on the state of the system:
; Using (7), (8), (10) and (11), the dynamics of the state
X(t) =3 m(x(t)) (AX(t)+Bju(t)) estimation error is:
i=1
: 3 .o .
y(t) = 2 H (x(t)) (Cix(t) 4 Diu(t)) e= Z Hi O (X)) (Pjie+ Tijx+ Sjeu) - (13)
i= ij kel

For the sake of simplicity(t) will be omitted in the sequel. where:
Let us denote the estimated state kyBYy adding and Pjk = Aj — GGk

. r . . Fiik = AA — GjACik
subtracting the ter i (X) — i (X iX+ Bju), we obtain ik ] 1=
g rirgl(ul( ) — Hi(X)) (Aix+ Bju) Sk = OBij — GjADy



ij. ke {1,...r}

Let us define the augmented state=Te" x"]" which
dynamics is described by the augmented system:

X = 3 (R () (A& + Brju)  (14)
k=1
Z = HX (15)
where:
Mijk= { q’(;"‘ rAj"i" ] Bk = { zéji" ] H=[l, 0 (16)

The goal then is to determin®; to guarantee the stability

of (14) while attenuating the effect of the inpuft) on z(t).

Theorem 1: The system (14) is stable and th&-gain
of the transfer fromu(t) to z(t) is bounded, if there exists
symmetric matriced?; and P, matricesK; and a positive

scalary, such that the following conditions hold:

Xl1jk Gijk  Wijk
Oijjk Xo  PBi | <0, V(i,j,k€e{L..r}® (17)
Wik B'P, —yi
where:
Xijk = A[PL+PA]—KjG—CiK] +1  (18)
X = AP +PA (19)
eijk = P]_AA”' —K,-ACik (20)
Wik = PiABjj—K;ADjk (21)
The gains of the observer are derived from:
Gj = P K; (22)
and the attenuation level is :
y=1\Yy (23)

Substituting (26) and (15) in (28), we obtain:

r

Z 1 (X) 1 (R) i () (X' (AP + Pty )R
i,j,k=1
+X PZjju+u' B PR) + K HTHR — yPuTu < 0
(29)

The convex sum property of the weighting functions allows
to write:
;

3 MO RO (AP PR
I, ], K=

+XPZju+u' B PR+ KTHTHR — y?uTu) < 0

(30)
which can be written in the matrix form:
r
Z 1 (X) 1 (R) ik (OFT Zi 4 < 0 (31)
ijke=1
where:
_ MNP +PAMik+HTH  PAij
=ik = BT P VA
ijk
- 4]
r =
u
A sufficient condition for (29) to hold is:
MP+PAMK+HTH Py }
ik ! JCl<0 (32
[ AL\ P —yl

v(i,j,k) e {1,...,r}3

Let us choose the following structure for the matfix

_ P O
P‘[opz]

Using the definition of#jjx and %;jk given in (16), and the

(33)

Proof: Considering the following quadratic Lyapunov use of the changes of variables:

function:
VR =X"PX, P=P" >0 (24)
its derivative with regard to time is given by:
V(%) = KPR+ X PX (25)
By substitutingX (14) in (25), we obtain:
A r
V(&) = Z i () 1 (R) i () (T (23,cP
i k=1
+ PR+ X PAju+u’ BLPR)  (26)

The goal is to attenuate the effect of the input) on

Kj = PG; (34)
and

y=v (35)
we obtain from (32) the LMI conditions expressed in (17)
in the theorem 1. |

In many practical situations, the output is given by a
set of sensors measuring a subset of the state variables.
Assuming that the location of the sensors does not depend

z(t). So, in order to guarantee the stability of (13) and th&iven by:

boundedness of the transfer frant) to z(t):

1z(t)1]
<y, |lu®],#0, y>0 (27)
we consider the following criterion:
V(&) +2'z—y’u"u<0 (28)

on the operating point, we hai® =D, =...=D; =0 and
C1 =Cy=..=C, =C. The output of the system is then
y=Cx (36)
In this case, the system (14) becomes:
r
X o= Y mm@ MR+ A (37)
i,]=1
z = HX (38)



where: where Xyj, Xz, ©jj andW;; are defined in corollary 1. The

G G . gains of the observer are derived from:
M= | B oGJC A .G’C} Sij = [ Asll } (39)
A Gj =P K| (50)

The simplified version of theorem 1 is then given in the and the attenuation level is given by:
corollary 1.

Corollary 1: The system (37) is stable and th&-gain y= \ﬂ/ (51)
of the transfer ofu(t) to z(t) is bounded, if there exists Proof: The proof is similar to the proof of the
symmetric matriced; and P,, matricesK; and a positive theorem 1 using the results of eigenvalues assignment
scalary, such that the following conditions hold(i,j) € published in [16]. u
{1,..,r}%

IV. STATE AND UNKNOWN INPUT ESTIMATION

X (;'2'1 qJI'?lJ In this section, the problem of state and unknown input
i 2 RB <0 (40)  estimation is considered by extending the Pl observer de-
Wi BIR -y

veloped for linear systems to the case of TS systems with
where: unmeasurable premise variables. Firstly time, the unknown
input is assumed to be a constant signal. The convergence

Xy = AiTP1+ PLA - KiC_CTKJ'T +1 (41)  conditions are obtained by using the results given in the
Xo = AR +PA (42) previous sections. Secondly, the derivative of the unknown
@ = PAAj—KC (43) input.is a;sumed to be bound_ed. The convergence cor_nd_itions
W — PAB. (44) are given in the LMIs formulation. For the sake of simplicity
' 155 the output of the considered systems is linear with respect t
The gains of the observer are derived from: the state, the input and the unknown inpgbt £ ... =C; =C,
G =P K, 45) Di=..=D;=DandF =..=F =F).

Let us consider the following system:
and the attenuation level is given by: o BULEf

Y=Yy (46) X= L0 BUT R (52)

y=Cx+Du+Ff

The performances of the observer can be increased byasgmption 1: The following assumption holds :
eigenvalue assignment in a specific region in the complex )
plane. For nonlinear Takagi-Sugeno systems, it is neggessar f(t)=0 (53)
to assign all of the eigenvalues of the local observers. The
performance objectives tackled in the present paper akgt us consider the augmented stage= [x" fT]T, then the
twofold: a decay rate to ensure the fast convergence 6prresponding augmented system is:
the observer and the limitation of the imaginary part of
the eigenvalues of the observer to reduce the oscillatory
phenomenon. Consequently, the eigenvalues of the system
generating the state estimation error are clustered in an
LMI region S(a,B) which is the intersection between aWwhere:
circle with center(0,0) and radiusf and a strip with real ~ { A E } 5 { Bi
part smaller than-a. The corollary 2 gives the conditions |10 O 'l o0

of convlergence. of thet observer taking into account thﬁpplying the same method used to obtain (7)-(8), the system
elgenvaiues assignment. (54) can be transformed into the following equivalent form:

Xa = élui (X) (Aixa+Biu) (54)
y = Cxg+Du
}, C=[C F]

Corollary 2: The system (37) is stable and the poles of %o = i
system generating the state estimation error lieSia, 3) z !
and the.%,-gain of the transfer fron(t) to z(t) is bounded,

) ((Aj+0A)xa+ (Bj +ABij)u)  (55)

i,]=1

5]

if there exist symmetric matrice® andP,, matricesk; and Where: .
a positive scalay, such that the following conditions hold: DX =X —Xj, % € {A,Bi}

X1 G W The PI observer is given by:

o Xi PB | <0,e{1,..,r}? (47) .

— ’ T Ai%a+Bju G
{ ‘”?Jj B'R, -l %1 i )( it Bjut Gy -9)) (56)
CXa +
~BP  ATP-CTK] y =
[ PA; —K,C —BP <0 (48) where:

5 GP]
ATP+PA; —CTK] —K;C+2aP <0 (49) G’{ Gij }



The estimation error is given bg, = x5 —Xa, and its The Proportional Integral Observer (PIO) can be appliest onl
dynamics is given by: in the case where the unknown input is constant or slowly
r oL . . time varying. In order to estimate other types of unknown

€= Z Hi (X) i (R) ((Aj — GjC) ea + DA jxa +ABjju) (57) inputs, the Proportional Multiple Integral Observer (PMIO
; ———

=1 Py is proposed in [17].
J
r
o AV V. SIMULATION RESULTS

- S um@ @t | S

i]=1 To illustrate the effectiveness of the proposed methods,
n AEj; - (58) numerical examples are given in this section. The first one

0 ' concerns the state estimation and the second one uses the

r ) AA . Pl observer in order to estimate the state and the unknown
= > HJH;(X) <¢jea+[ 0 }X‘Frijw) (59) inputs.

where: A. State estimation
~ . ~ f . AE;; Consider the system described in (1) defined by:
rij:[AEij ABij ], o):|: U:|7 AEij:|: OJ :|
-2 1 1 -3 2 =2
. A= 1 -3 0 |,A=]|5 -3 0
Let us define the augmented state-Te] x'|", then the 1 { 5 1 _2] 2 [ T _4]

augmented system is:

1 15
Bi=| 05 |, By=| 3 ,C:“ : 1]
0.25 2

The weighting functions are defined by:

izi;m(x)u,-(ﬁ) K AQJ%EBﬂw (60)

. A 1-tanh(xy)
—tanhx
R (
by 68)
Zz=HX (61) { o(X) = 1— p(X) = 1+tagf(x1)

where: . : . . .

— By using the corollary 2 with eigenvalues assignment in an

Bi = [ E B ] LMI region defined bya = 0.1 and3 = 10, we obtain the
The system (60) has the same form than (37). The objecti\f/%IIOWIng matrices:
is to assure the stability of (60) while minimizing the —1556 8556 —1556 8556
influence ofw(t) on the estimation erraz(t). By using the Ly=| 6919 -8956 |,L,=| 6919 —8.956
corollary 1, we obtain the sufficient convergence condgion —1.684 6472 —1.684 6472

of the PI observer (56). An output noise bounded by 1 is added to the output of

the system in order to simulate measurement noise. The
simulation results in the figure 1 illustrate the convergenc
of the state estimation error in the Ul free case.

Theorem 2: The system (60) is stable and th#-gain
of the transfer fromw(t) to z(t) is bounded, if there exists
symmetric matriced; and P, matricesG; and a positive
scalary, such that the following conditions hold(i, j) €

{17...,r}2: s et
X Clf PlAEi j PlAéi j o V
o] X PE  PB <0 (62)
A%HTJ P ER ¥ 0 0 5 10 15 20
ABPL BIR 0O -V e,
10 T T
where: .
Xij = AP +PA—LiC-CTL] +1 (63) _mr | | |
Xo = AP+PA (64) 0 5 5 15 20
Gij = PlAAij (65) mL ‘ ‘
The gains of the observer are derived from: or
~ Gp; % 5 10 15 20
Gj= [ G, ] =P (66)
i

and the attenuation level is given by:

y=\v (67)

Fig. 1. State estimation errors



B. Sate and unknown input estimation [3]

In this section, actuator and sensor faults are added to the
previous example. Their respective influences are defined by,
the following matrices:

0 1
0 1

The simulation results of the Ul estimation obtained by the

Pl observer are displayed on figure 2. Solving the LMIs in(®!
the theorem 2 may cause slow dynamics of the observer,
SO0 an eigenvalue assignment in the same region as tHél
previous simulation allows to increase the performances of
the observer. 18]

(9]

1 0
0 0
1 0

E=

1 0
s E2=11 0 762{ (5]
1 0

[10]

(1]

[12]

[13]

[14]

Fig. 2. Unknown inputs

[15]
VI. CONCLUSION

This paper addresses new methods to design observEfd
for nonlinear systems described by Takagi-Sugeno models
with unmeasurable premise variables. The first observer [i&]
devoted to the estimation of the state of a given system and
the second observer which is an extension of the classical
Proportional Integral Observer (PIO) developed for linear
systems, provides both the estimation of the state vasable
and of the Ul. The proposed approach is based on some
transformations using the convex property of the sum of
the weighting functions. The convergence of the estimation
errors are studied using the second method of Lyapunov
and the.%, technigues, and the conditions which guarantee
the convergence of the estimation errors are obtained in the
Linear Matrix Inequalities (LMIs) formulation. The future
works will concern, on the one hand, the application of
the proposed methods to develop a scheme for diagnosis of
nonlinear systems, and on the other hand, the convergence
conditions will be studied in order to reduce its consesrati
by using for example, other kinds of Lyapunov functions.
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