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Abstract—In this paper, a proportional integral (PI) and a In the context of robust observer design, one of the most
proportional multiple integral observer (PMI) are proposed  successful technique is the use of Pl observer, in which
in order to estimate the state and the unknown inputs of e ynknown inputs are estimated simultaneously with the

nonlinear systems described by a Takagi-Sugeno model with )
unmeasurable premise variables. This work is an extension states of the system. The Pl observer was first proposed by

to nonlinear systems of the Pl and PMI observers developed Wojciechowsky in [25] for single input-single output LTIsy
for linear systems. The state estimation error is written as a tems. A generalization scheme was performed by Kaczorek
per_turb_ed system. First, the convergence conditions of the sta [12] to multivariable systems. Thereafter, the Pl obsehas
estimation errors between the system and each observer are pean ysed in different studies. In [20] a linear Pl observer
given in LMI (Linear Matrix Inequality) formulation. Secondly, . . . .
a comparison between the two observers is made through an is designed a.md applled_ toa phyS|caI. system. In [15] a Pl
academic example. observer for linear descriptor systems is proposed. Howeve
this observer can be used only if the unknown inputs are
I. INTRODUCTION constant over the time, nevertheless in practical cases the
Model-based approaches have been important and usefpiproach is effective if the variations of the unknown irgout
means to construct a fault diagnosis module for nonlineare slow in respect to the dynamic of the system. In other
systems in order to detect, isolate and identify actuatocases, this problem can be solved by using multiple integral
sensor and system faults. Generally, the implementation of the observer in order to estimate all of the derivatives of
these functions is realized with observers. Moreover, oldhe unknown inputs. A PMI observer was firstly proposed
servers provide an estimation of accessible and inacdessiby Jiang in [11]. In [7], [13] a proportional multiple intesr
states, outputs and faults of nonlinear systems. The gstimaobserver is proposed to estimate a large class of signals
signals are used for example to elaborate feedback contdgscribed in a polynomial form for LTI descriptor systems.
laws, fault detection and isolation procedure (FDI) andtfauAn other paper [9], presented in the same conference, deals
tolerant control (FTC) [18], [10]. with the state estimation using a new method consisting
The proposed work focuses on the class of nonlinean the transformation of the TS system with unmeasurable
systems described by Takagi-Sugeno models [22] with upremise variables into an uncertain TS system with estithate
measurable premise variables. The T-S model providespaemise variables, in addition, the method is extended to
useful tool to represent with a good precision a large cléiss estimate the unknown input using a Pl observer.
nonlinear systems [23] and can even describe exactly pertai
classes of nonlinear systems [24] by using the nonlinear sec
tor transformation. In the recent years, considerablertsffo
have been provided to study stability and stabilization of
this class of systems [14], [23], [8], [5]. The topic of state We propose, in this paper, a generalization of the Pl and
estimation has also been widely studied in many works. IRMI observers to nonlinear systems described by T-S models
[2], [19], [16], [3], the authors proposed different metod with unmeasurable premise variables. The paper is orgénize
in order to estimate the state of T-S systems for the purposs follows. Section Il presents the T-S structure and the
of diagnosis. problem of state estimation, and gives the motivation of thi
The main advantage of T-S structure is its simplicitywork. In section Ill.A the design of Pl observer is addressed
because it originates from the interpolation between lineand in section 1ll.B the PMI observer is studied. Section
systems. Thus, analysis and design methods developed fdrpresents a numerical example with discussion about the
linear systems can be generalized to nonlinear systems payformances of the two proposed observers. Finally, this
used in the works cited above. note is ending with conclusions and perspectives. The &lea i
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II. PRELIMINARIES AND PROBLEM STATEMENT  only one multiple model using weighing functions which
A. Multiple model approach depend on the state of the system. Thus, the same multiple
Consider the followi | f i i model can be used to construct observer bank for detecting
Ic_)nS| er te o.owmg general form of continuous-time, 4 isolating both actuator and sensor faults. However, the

honiinear systems. main difficulty is due to the fact that the state equation & no

X(t) = f(x(t),u(t a nonlinear function of the state. In the literature, only fe

X f 1) li functi f the state. In the literat hy f

y(t) = h(x(t),u(t)) works are developed for observer design for T-S systems with
wherex € R", uc R™ y e RY and f and h are nonlinear unmeasurable premise variables. Nevertheless, we can cite
functions. The representation (1) is difficult to study,eels [1.6]’ [17], [26], [4], where the guthors re—wrltg the system
where in literature, all of the works developed Concernineltherasaperturbed or uncertain T-S system with measurabl

. o remise variables.
the nonlinear systems concern specific classes. For example

in [1], [21], Lipschitz systems, which are represented by a 1. MAIN RESULT

linear part and a nonlinear one, are considered. The namline

part is assumed to be Lipschitz with respect to the state
As mentioned in the introduction, the T-S model ap .

proach is a very interesting method to represent nonlinear® A1l. The system is stable

systems. Different methods exist to obtain a T-S model, * A2. The signalsu(t), d(t) and w(t) are bounded.

as identification or linearization of the system (1) aroundPractically, these assumptions are often not restrictive.

different op_eratmg p0|nts_ or by using the no_nlln_ear se(?to'&. Extension of classical Pl observer

transformation. The multiple model structure is given by:

Along this paper, we assume that the following assump-
tions hold:

; Consider the following T-S fuzzy system with weighting
X(t) =3 (&) (AxX()+Biu(t) + Ed(t) +Ww(t)) functions i; depending on the state of the system:
i=1

Y(t) = Cx(B)+ Du(t) +Gd(t) +-Wealt) @ 4 KO = 3 ) (A0 + Bult) + Ed(D) + Weo(t)
iZ1
whereA; e R™"N B e R™™M C e RN, D € RI*™M E; € RS, y(t) = Cx(t) + Gd(t) + Wa(t)
W € R™V andG € R¥*S, andW e R9*V. The unknown inputs (4)

are modeled byd(t) and w(t) are the noises affecting the In the next, for sake of simplicity, the time variableis
state and the measurement equation. In this structure, te@itted.

output is assumed to be linear with regard to the state of theln this section, the unknown inputi{t) are assumed to
system. The weighing functiong are nonlinear and depend be constant:

on the decision variabléf (t) which can be measurable « A3.d=0

like {u(t),y(t)} or not measurable like the stat&t) of  Thijs assumption will be relaxed in the section II1.B.

the system. The weighting functions satisfy the following Tpe proposed Pl observer is given by the following

properties: equations:

0<pi(é(t) <1 o )

5 W(ED) =1 ) k= 5 () (A Bu+ Ed-+Ka(y—9)

- _ o _ y=Cx+Gd (5)
Thus the structure of the multiple model is simple and is PO R
considered as a universal approximator since it can represe d= 2 H (R)Kii(y—y)

any nonlinear behavior according to an adequate numbégr ~ _
submodels. The multiple model structure provides a mean yghere X and d are the estimates ok and d. In order
generalize the tools developed for linear systems to neatin to facilitate the comparison between the system and its

systems due to the properties expressed in (3). observer, the system (4) can be written as a perturbed system
with weighting functiongy; depending on the estimated state
B. Problem statement as follows:

Diagnosis of nonlinear systems is often based on a bank of r
observers to detect and isolate actuator and sensor fRalts. X= Zlui (X)(Ax+Bju+ Eid+Ww+ V) (6)
designing observers, it is often assumed, in the literathate =
the weighting functiong; depend on measurable premisewhere:
variables u and/or y. Thus, to perform diagnosis, it is r
necessary to develop two different multiple models. The firs V= Z\<M (X) — Hi (X)) (Aix+ Bju+ Eid + W w) )
one where the weighting functions depend only on the output 1=
of the system in order to detect and isolate actuator fault¥his term is seen as a bounded vanishing perturbation to
The second one with weighting functions depending only ominimize. Indeed, due to the assumptions Al, A2 and the
the input of the system in order to detect and isolate sensdefinition of the weighting functions (3(t) is bounded
faults. To reduce this difficulty, it is interesting to despl and if X— x thenv — 0.



The assumptio\3 allows to make the system (6) in the Theorem 1: The PI observer (9) for the system (8) is

augmented form:

{XaZiilui(ﬁ)('&‘Xa+éiu+ﬁ&)) ®)

y=Cxa+Dd

where:

A= §Ja=[3]ne[s W)e[ 2]
E=[c G],f)z[OW]aXa:{ﬂ

A similar reasoning makes it possible to transform the
proposed Pl observer (5) in the following augmented form:

{ o= 3 () AR+ Burky-9) g
=Cf,

<
O

where: K
K. — Pi
-]
Let us consider the augmented state estimation error:
€3 = Xa—Xa (10)
whose dynamics is given by:

&= ilui (®) (A —KiC)ea+ (i —KiD)®)  (11)

The goal is to determine the gain matrics of the

observer in order to stabilize the system (11), i.e. to guar-
antee the convergence of the state estimation error toward
zero when the perturbatio® is nul and to attenuate the
transfer gain from the bounded perturbatid(t) to the state

estimation erroe,(t) whend(t) is different from zero @(t)
is bounded since assumptioA& and A2 are satisfied).

determined by minimizing/ under the following LMI con-
straints in the variableB=PT >0, M; andyfori=1,...r:

ATP+PA-MC—-CTM +1 Pl —MD

{ FTp_BTMT Ry <0 (14)

The gains of the observer are derived frin= P~1M; and
the attenuation level is calculated py=/y.

Proof: According to the assumptionsl andA2, &(t)
is bounded. Then, by applying lemma 1 wile,(t)|]2 <
y||&(t)] ]2, we obtain:

ATP+PA —PKC—-CTKTP+1 Pl —PKD 0
{ FTP—DTRTP VA <

(15)
The LMI formulation in theorem 1 is obtained by using the

following changes of variables:
Mi=PKi, y=y

O
Remark 1: The minimization of y may result in slow
dynamics of the state estimation error. This problem can be
solved by pole assignment of the matridds— K;C) in the
left half complex plane defined by:

{z| Re(z) < —A}, A >0 (16)

Thus, the LMIs in theorem 1 are solved simultaneously with
the following constraint (to imposBe(Aj) < —A, where;
are the eigenvalues & andA > 0):

PA+A)+A+ANTP-MC-C™MT <0  (17)
More precise pole clustering can be obtained by adding
LMI constraints [6].

This approach remains effective in practical cases where
the assumption 1 is not satisfied. However, the unknown

In order to establish the existence conditions of the PJPUtS must vary slowly. Otherwise, bad state and unknown

observer in theorem 1, let us first introduce the followin

lemma:

dnputs estimation are obtained by using this method. In the

next section, another method to estimate the state and the

Lemma 1: [24] Consider the continuous-time TS-systerrP”known inputs is proposed. It is based on the proportional

defined by:

{ K = 3 WOO)AXD +BUO)

y(t) = Cx(t)

The system (12) is stable and verifies tig-gain condition:
ly(t)| |2 < yllu(t)|]2 if there exists a symmetric positive

definite matrixP such that (13) is satisfied for=1,...,r:

T . T )
[AiP+PA.+CC PB | _, (13)

B/ P —yl

multiple integral observer. This observer is interestireg b
cause the assumptioA3 is not required in the theoretic
proof, so it is possible to estimate a larger class of unknown
inputs.
B. Proportional multiple integral observer

Let us consider the multiple model with unmeasurable
premise variables described in (4). The unknown input is

assumed to be a bounded time varying signal with gtfll
derivative:

« A4 d9(t)=0



Generally, the use of a Pl observer requires the conditiomhere:
that the unknown input is constant (i.el:= 0), thus, the T A E 7

. . . . . A E 0 0 0 Kpi
unknown inputs which satisfie®4 cannot be estimated with 0 0 Ilg - 0 O KO
a good precision. Then, PMI observer is more adequate for 22 . K:ii
this problem, because the observer estimates(¢he1)" &= , A= c 00 00 K= :
derivatives of the unknown input and gives a good precision Coon e q:_z
of the estimated unknown inputs. €2 0 0 0 0 O I K'(Ll
Consider the generalization of the proportional multiple- -1 L0 0 0 0 0 0] Kii
integral observer to T-S systems of the PMI observer pro- E_Tc G 0 0 0
posed in [7] for linear descriptor systems: =1 ]
. r o Fo_ T T
2= 3 WAL+ Bu+Eido-+Kn(y—9)) i=lroo . 0]
9:6;( Gd In the following, we are only interested with particular
A r A componente and ey of &
do= 3 H(OK(y—9)+di
LT R e | =
dlzizlﬂi(X)Klli(y_Y)+d2 (18) [ & } —° (22)
where:
s L2/, A c—| h O | 0 --- 0
dg2= _zlui(X)K“ (Y—9) +dg-1 0 Is |
1=
d;q—l — i Ui (;()Klqi—l(y_y) 0 represents null matrix with appropriate dimensions.
i=1 Theorem 2: The PMI observer (18) for the system (8)
whered, i =1,2,...,(q—1) are the estimation of thgg—1)  that minimizes the transfer frond(t) tOT et)” eo()T]
first derivatives of the unknown inpuk(t). is obtained by finding the matricd8=P' > 0, M; and y
The state and unknown inputs estimation errors are: that minimize y under the following LMI constraints for
. . i=1.
e=X—X, :d'—dA,.., 1=dg1—dg — = =~ —
| € 0:+o» -1 =Cg-17Cg1 A1TP+PA. MC—CMT +CTC Pl — MW
Their dynamics are given in the following form: Frp— WTMT iy <0
o = . (23)
e= 2 KA —KpiCle+ (M —KrW)o+ (B —KriG)®)  The gains of the observer are derived from:
S () (KO W & ~
eo_iglu,(x)(leiCe+elfK”WwaﬂGeo) R —pPIm (24)
. r A o~
C1=2 Hi (R)(—KjiCe+ ez — KW — K{iGep) and the attenuation level is calculated by:
r y=\y (25)
& 2=y M(R)(—KoCe+ eq,l—Kﬂ*ZVT/@—Kﬂ*ZGeO) Proof: The proof of theorem 2 is similar to the proof
_ i=1 " _ " of theorem 1 by using the lemma 1 with the system (20)
eq—lzizlﬂi(f()(*Kﬂ Ce— KW~ Kjj "Gep) Remark 2: When the conditionA3 is not satisfied i.e.
- (19) d@ =0 butd@ is bounded then, we can consider 8
where: _ derivative ofd(t) as a perturbation. The new perturbation
Fi=[lh W]lW=[0 W] vector is then given by:
The equations (19) can be rewritten in the following G)(t):[ vi)T  w()T d(a)(t)T ]T
augmented form:
; The additional componeid; is added in the state vector. The
& — ZM(X)((A' Ké)é+(fi—KiW)d>) (20) matricesA;, i, W, C are augmented. Then, the Theorem 2
i=

can be applied in order to design the Proportional Multiple
~ Integral Observer with minimization of the new bounded

e .
[eo} = Ce (1) perturbationd(t).



IV. NUMERICAL EXAMPLE AND SIMULATIONS ’
Y - estimated d,

In this section, the proposed method is illustrated through il
an academic example. Consider a continuous-time T-S sys- [

tem (4) defined by: or=
2 1 1 3 2 -2 Bl
A= 1 -3 0 , Ap= 5 -3 O ,
2 1 -8 1 2 -4 3 5 10 15 20 2 3 3 20 25 50

and

1 1 1 5 0
C:[J.Ol}G:{l 0} _ _ o
Fig. 2.  Unknown input estimation with a Pl observer

The unknown input vectod(t) is made up ofdy(t) which
affects the outputs of the system adgl(t) affecting the 3

dynamics of the system (see the matriéggs E; and G). 2
For example, we can considés as a sensor fault ardp as 1 1
an actuator one. 0
The weighting functions depend on the first component
of the state vector and are defined as follows: -2
{ ul(x) = ].—mfnf(xl) 26) % 5 10 15 20 2 3 % 20 s 50
p2(X) = 1— p1(x)

The weighting functions obtained without perturbations
and unknown inputs are shown in figure 1. This figure shows
that the system is clearly nonlinear singe and 1, are not
constant functions.

1k

1

0.8 0 5 10 15 20 25 30 35 40 45 50

] Fig. 3. Unknown input estimation with a PMI observer
0.4

02f

Pl observer gives an acceptable state and unknown inputs
estimation even if the assumpti@®8 is not satisfied. How-
Fig. 1. Weighting functiongi and i, ever, in this example, the unknown inputs have fast variatio
resulting on bad state and unknown inputs estimation (fggure
The perturbatiorw is chosen as random signal uniformly2 @nd 4) compared to the results given by the PMI observer
distributed in[-0.5 0.5]. The considered unknown inputs (figures 3 and 5).
dl(t_) ar_1dd2(t) are time va_ry_ing signals with neglecte_d fourth V. CONCLUSIONS AND FUTURE WORKS
derivatives. After synthesizing a Pl observer accordinthé
theorem 1 and a PMI observer with= 4 according to the  The design of proportional integral (PI) and proportional
theorem 2, we obtain the simulation results depicted in thaultiple integrals (PMI) are studied in this paper. This kvor
figures 2, 3, 4 and 5. is an extension of the Pl and PMI observers developed for
Figures 2 and 3 show the unknown input and their edinear systems to nonlinear T-S systems with unmeasurable
timations with Pl and PMI observers. It is known that thepremise variables. The convergence conditions of the state

10 15 20 25 30 35 40 45 50
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(20]

[11]

[12]

[13]

State estimation error with a PMI observer

Fig. 5.

[14]

estimation error are given in the LMI formulation. The
observers are robust since they are synthesized in order[t6]
minimize the effect of noises on the state estimation eryor b
using an? approach. The Pl observer is interesting for theyg
estimation of constant or slowly varying unknown inputs and

it is less sensitive to noises compared to the PMI observElrﬂ
[7]. In the other hand, PMI observer is a good way to obtai

a more precise estimation of states and unknown inputs. THe]
future works will concern, firstly, the improvement of the
PMI observer by introducing a stable frequency weightin
functions on the perturbation®(t) which allows to reflect
the expected frequency content®dft), secondly, the use of (20]
these observers in nonlinear system diagnosis.

19]
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