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Abstract— This paper presents a new method for fault linear sub-model. An interpolation of all these sub-models
tolerant control of nonlinear systems described by Takagi- with nonlinear functions satisfying the sum convex propert
Sugeno fuzzy systems with unmeasurable premise variables. allows to obtain the global behavior of the system. One

The idea is to use a reference model and design a new it ks in ETC field f i i
control law to minimize the state deviation between a healthy ¢@n CIl€ SOME WOrKS In leld for nonlineéar systems,

reference model and the eventually faulty actual model. This for example, in [5], the authors give a method for actuator
scheme requires the knowledge of the system states and offaults by using their estimations, for nonlinear descripto
tPhe OCt(?UffiPiCl tfaU“lS-OEhese S(ingl)s ar(; estirtrjatetli l\/{r?tm a systems with Lipschitz nonlinearities. In [14], a method
roportional-Integral Observer or Proportional-Multi- . ; PR 3
Integral Observer (PMIO). The fault tolerant control law is {fiugglsgegnéﬁtzgr:?rﬂ;oblztslgg Iszsrgf\),?rgdbgg izyv‘\:ihing
designed by using the Lyapunov method to obtain conditions : . . :
which are given in Linear Matrix Inequality formulation system is then designed, to switch from one controller to an
(LMI). Finally, an example is included. other, from the residual decision logic.
. This paper is dedicated to the design of a fault tolerant
Index Terms— Takagi-Sugeno fuzzy systems, state and fault o) strategy for nonlinear systems described by Takagi
estimation, Pl and PMI observers, Lyapunov stability analysis, . . .
linear matrix inequality. Suger)o mgdels with unmeasur_able premise variables. The
main idea is to re-use the nominal control input developed
I. INTRODUCTION in fault-free case to which two terms, related to the ocalirre
Fault tolerant control (FTC) has been recently introduceHiUIt and the tracking error trajectory between the system
in the fault diagnosis framework. It consists to compute nd a reference model, are addeq to be. able to compensate
new control law by taking into account the faults affecting'® fault. The reference trajectory is provided by a refeeen

the system in order to maintain acceptable performances aﬂr}ft’del replr elsentlng Fhe sr):stim Wl'tzom fa]:ulrtls. In add'ft'or?'
preserve stability of the system in the faulty situations. the control law requires the knowledge of the state of the

The existing strategies are classified into two classedyStem ar_ld faults affect_mg It Fpr that purpose, a P! (qr)PMI
The first class is called passive fault tolerant control O?bserver is used to.est|'mate s.|multaneously'these S|gnaI§.
robust control. In this approach, the faults are treated asThe se_:cond section s ded|cat¢d to a brief prese_ntatlon
uncertainties. Therefore, the control is designed to bagob ©f Takagi-Sugeno models. The third section deals with the

only to the specified faults. Contrarily to the passive FTCprobIem of fault tolerant control design with PI and PMI

active FTC requires a FDI block to detect, isolate an&bservers. Finally, an academic example is proposed irr orde

estimate the faults. The informations issued from the FOP illustrate the FTC strategy.
bloc.k are used by the FTC module to reconfigure the control || TakAGI-SUGENO STRUCTURE FOR MODELING
law in order to compensate the fault and ensure an acceptable . . .
system performances. Consider a nonlinear system described by

The active fault tolerant control has been developed essen- (t) = fz(t),u(t)) 1
It_iaIIy for Iitnear [sgyastglms |[4],|_ [15], [13(1, I[12] andt dfetscrdmt y(t) = h(z(t), u(t)) (2
inear systems [9]. Clearly, linear models do not often eepr _ .
sent accurately physical systems due to nonlinear belgavior fThe T'Sl_ fuzzy m(idellngl aI:;)W?hto retpreseln;t_ the k;ehawotr
It is then interesting to work directly with nonlinear moslel Of ? nonmebar sgslemE( )h y b N 'g (Trpozat|%nto ? Stf]
Nevertheless, from the mathematical point of view, workin | t;n?gr hsu _—mof teh& al(': su '”1[0 ethcon r;] utes c;]t. €
with nonlinear models is much harder than with linear oned 0P Pehavior of the noniinear system through a weighting

A new representation that combines simplicity of linea unction ;(£(t)). The T-S structure is given by

models and accuracy of nonlinear behaviors is introduced, o
initially, in [16] and known asTakagi-Sugeno (T-S) models a(t) = ,L; pai(€(1)) (A (t) + Biu(t) )
The idea is to consider a set of system operating points. At )

T
. ) . : = ; : D,
each operating point, the system is represented by a simple y(t) 1; wi(§(0)(Cra(t) + Diu(t)
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depending on the variablegt) which can be measurable
(as the input or the output of the system) or non measurable
variables (as the state of the system). These functionfyveri
the following properties

> mle(t) =1 .
0< wi(E) <1 Vie{l,2,..r}

Obtaining a T-S model (2) from (1) can be performed from
different methods such us linearizing the system (1) around
some operating points and using adequate weighting func-
tions. It can also be obtained by black-box approaches which
allow to identify the parameters of the model from input-
output data. Finally, the most interesting and importany wa Fig. 1. Fault tolerant control scheme
to obtain a model in the form (2) is the well-known nonlinear
sector transformations [17], [12]. Indeed, this transfation
allows to obtain an exact T-S representation of (1) with ndhe matricesk;; are determined in order to ensure the
information loss on a compact of state space. stability of the system even if faults occur and to minimize

Thanks to the convex sum property of the weighindghe difference betweer(¢) and x(t). By analyzing the
functions (3), it is possible to generalize some tools devestructure ofuy(t) given in equation (6), the estimation of
oped in the linear domain to the nonlinear systems. Thibie statex;(¢t) and thef(¢) faults is required. This task is
representation (2) is very interesting in the sense that pierformed via a Proportional-Integral observer which -esti
simplifies the stability studies of nonlinear systems aral thmates simultaneously the state and the faults of the system.
design of control laws and observers. In [2], [6], [7], the Let us consider the Pl observer

stability and stabilization tools are inspired from thedstu ) r A

of linear systems. In [1], [10], the authors worked on the Ty = Zui(a}f)(Aifcf + Bi(us + f)
problem of state estimation and diagnosis of T-S fuzzy i=1

systems. The proposed approaches in these last papers rely +  Hui(ys —9y)) (7)
on the generalization of the classical observers (Luemverg : r

Observer [8] and Unknown Input Observer (UIO) [3]) to the fo=D ml@s) (Hailyy — 9y)) (8)
nonlinear domain. In the remaining of the paper, we use the i=1 .

following lemmas. gy = Ciy+Rf 9)

Lemma 1:Consider two matriceX andY with appropri-
ate dimensions and a positive definite matrix. the following
property is verified

XTY +YTX < XTQX +YTQ"lY Q>0 (4)

which depends on the gaiid$;; and Ho;.
The output error between the system (5) and the observer
(7)-(8) is written by

Lemma 2:(Congruence) Let two matrice® and Q, if P yr — iy =Cea (10)
is positive definite and ifQ is a full column rank matrix, where
than the matrixQ PQ7 is positive definite. ) o
ll. FAULT TOLERANT CONTROL OF T-S FUZZY SYSTEMS c=l¢ R], 2= { f } € a=Ta—fa (1)

Let us consider the T-S reference model without fault¥he dynamic of the trajectory tracking errer= z — s,
described by (2). The system with faulfsis described by obeys to the differential equation
the following T-S model with unmeasurable premise variable

7(6) = 35l (0) (Aias () + Bilug(0) + £(0)) ¢ = Q@)+ B

yr(t) = zCT%f(t) + Rf(t) © - /;i(meAz‘xf + Bi(uy — f)) (12)
5

For sake of simplicity, the time variable is omitted. Taking into account the definitions (6) and (12) leads to

The goal is to design the control law (¢) such that the LA . .
system state; () converges toward the reference state) ¢ = > > Hi(zp)u;(@s)(Aie = Bi(f — f)
given by the reference model (2). The control strategy is i=1j=1
illustrated in the figure 1. The following structure is prepd - BiKyj(xy —2y)) + Ay (13)

for the control law

= DD milep)u(Ep)((Ai — BiKij)e — Lijea)

=Y mte) (-f+Kiw—i)+u)  © oA (14)



where following theorem 1.

Lij=(BiKy Bi), €=~ (15) Theorem 1:The state tracking erroe(t) and the state

r and fault estimation errors,(t) converge asymptotically
Ay =Y (pi(w) — pi(ws))(Aiw + Biu) (16)  toward zero if there exists symmetric and positive definite
i=1 matricesXy, P, and matricedd,;, Ho; and K;; such thaty

In order to analyze the evolution of the errors, two cases minimized under the LMI constraints (27).
are Consid_ered . in the first one the faults are supposed to be U, —-B\K,; -B; —-B1K;; X, X; 0
constant ; in the second one they are assumed to be under , 0 0 0 P
polynomial form with respect to the time variable. !

* J

i 1]
<

o

o

o

* * 0
A. Constant faults * * * -1 OI 8 8 <0
In this first approach, we have(t) = 0 and, with i I : * _* A5 0
definition (11), the system (5) becomes in augmented form | N . . Z AT
j 3 i z (27)
Ty = Z pi(xf) <Aixa + Bﬂﬁf) (17)
ZC?,I U, = AiXi+X.A7 (28)
= UZq _ _
X v O, = PA;j+ATP, — H;C—-CTH. (29)
where _ _ _
4 B =5 = PQBJ —HljR—CTHQTj (30)
A= ( A ) B; = ( 0 ) (18) ®;, = —HyR-R"Hj, (31)
~ g =1, ...
C = ( C R ) (19) 2¥i yeeey T

The gains are given by<;; and H,; are obtained directly

The state and fault estimation emef(t) = a(t) — Za(f)  from the above optimization problem andy; are then
between the system (17) and the observer (7)-(8) eVOIV%mputed from

according to the following equation Hy; = Py Hyj (32)
J J

éa=> pildr) ((Ai — H,C)eq + FA2> (20) the L> gain fromA to é is given by
=1

T =V7 (33)
where . .
I, Proof: The gainsH;;, Ho; and K; are obtained by a
['= { 0 } (21) stability analysis of the system described by the diffaednt

equation (23), using the Lyapunov theory with a quadratic
function.
Let us chose the following quadratic Lyapunov function

Ao = (pilwy) — (@) (Aizg + Bi(us + 1)) (22)
=1
The concatenation of the state tracking trajectory errdr an V() = é'pé, P=P" >0 (34)
the state and faults estimation errors allows to write, frorﬂ/hereP is chosen as follows
(13) and (20), the new augmented system is

roor P 0 O
é i A6 +T P=| 0 P 0 35
E=Y Y pilwp)ps(@p(t)Ayé +TA (23) 0 02 M (35)
i=1 j=1
where The time derivative of the functiof (é¢) is given by
xr — :cf
e ty A S .
e=\| Tr =Ty |, A:<A1>’ (24) . v o L
f=r 2 Vie) = ZZui(xf)uj(mf)e (AijP+PAij)€
i=1j=1
j o + 2PPA
P=10 5L (25) P ~
vl = Y wizs)pi(@g)e" Mijé + 2PTA (36)
i=1j=1
~ Ai - BiKlj _BiKlj _Bz where
Ay = 0 Aj - H,;C Bj — HiR Ayj -PB;Ki; —PB;
0 *HQjC *HQjR (26) Mij =S 0 @j Zj (37)
0 _PSHQjO —PgngR

The gainsKy;, Hy; and Hy; are determined by solving a
minimization problem under LMI constraints, given by the Aij = PLA; — PLB; Ky (38)



©, = PA; — PyH,,;C (39)

%; = P,B; — PyHy;R (40)

ands is a function that acts on any matriX as follows

Let us remark that the bloc matrix

* k Tj

S(X)=X"+X (41)  of (48) can be written as follows
Assume that the input and the faults are bounded and that v, —-B1Ky; —B;
the system is stable. As a consequenkd(24), (16), (22)) * Z; T;
is bounded. So, the objective is to minimize thg-gain of * * T;
A on the erroré(t), this is formulated by By, X\ X, B KN\
el U8 )W) g)u g ) <0
<7, 1Al #0 (42)
1A]l, ’ (55)
Then, we are seeking to ensure asymptotic convergence v%ere
é(t) toward zero ifA(t) = 0 and to guarantee a bound£d
if A(t) # 0. This problem can be formulated as follows U, = AX,+ X, AT (56)
Vo ~T ~ 2AT
V) +ee—7rATA<O “3)  The lemma 1 gives
After some calculation and by using the convex sum property
o . . S ) U, —B,K1j —B;
of the weighting functions, the time varying inequality 43 N 7j T,
is satisfied if the following conditions hold * * T;
N <0, 4,5=1,....r (44) 4 ( BbKU)Q—l( BbKly>
0 0
where T
X1 X1
Ay —PBiKy; —PiB; P 0 + ( 0 ) Q ( 0 ) <0 7
0 o 5 0 P 0 0
Nij =S8 0 —P3Hy;C —P3HyiR 0 0 where() is a symmetric and positive matrix. After bounding
Py 0 0 I 0 the inequality (48) with (57), and, assuming that
P 0 0 0 —92rI ~
(45) Hy; = PHy; (58)
by congruence (lemma 2), for every invertible mafiix we 5= A2 (59)
have
Ny <06 WAL <0 (46) @ =L k=1 (60)
defining W by the LMIs in theorem 1 are obtained. [ ]
Pt 0 00 B. Time varying faults
W= 8 é ? 8 47) The assumption that the fault signal is constant over the
0 0 0 I time is restrictive, but in many practical situations where

the inequality (44) is equivalent to

* Zj Tj 0 Pg
* * T; 0 0 <0 (48)

* * * 772I 0

* % * * —y2I
where

Uy = AXy+X1A] — BiKy; X, — X1 K{;B]'(49)
Z;j = PyAj+A]P,— PH;C —C"H[;P, (50)
Y; = PB;j—PHi;R—CTH};P; (51)
T; = -—PyHy;R— R"H} P (52)
X, =P ! (53)

the faults are slowly time-varying signals, the estimatidn

the faults is correct, and the proposed FTC scheme can be
applied. In the case where the faults are not slowly time-
varying or constant, the Proportional Integral Observé®}P

can be replaced by a Proportional Multiple Integral Observe
(PMIO). Such an observer is able to estimate a large class
of time-varying signals satisfying the following assunopti

f(q+1) -0 (61)

The principle of this observer is based on the estimation of
all the firstq'" derivatives of the signaf(t). This observer
can also be extended to the case whgfe!) is bounded.

Let consider the system (5) with a fault in the general
polynomial form

f(t) = Qg —+ alt —+ a2t2 + ...+ (lqtq (62)



Let considerdy(t) = f(t), di(t) = f(t),...,

form .
iy = 3 mley) (Aia:f +Bzuf)
y = Ciy
where
Ty A, B, 0 0 0
do 0 0 I 0 0
Tf= : A = :
dg 0 0 0 0 I
dig—1) 0O 0 0 0 0
B;
0
Bi=| : C=(C R 00 0)
0
0

Z4(t) represents the augmented state vector composed of the
statez (¢) and theg!” first successive derivatives of the fault
f(t). The observer simultaneously estimating the sigte)

and the faultsf(¢t) with the successive derivatives is given

in the following form

Iy = ;m(fcf) (Aif%f + Biuy + Hy(y — 17))

§=Ciy

The augmented state estimation ere¢t) = i (t) — 2 ;(t)

and the error between; andx are given by

(£)-ESpmnts () o1

=1 j=1
where

j” o Ai — BiKlj i/ij
E 0 Aj— H;C

Thus, the structure of the state equations is the same as th?
expressed in the case of constant faults. The synthesigof t
gains of the controller and those of the observer are olaine

by solving the LMIs given in the theorem 1.

IV. SIMULATION EXAMPLE

The proposed fault tolerant control strategy is illustiate

on an academic T-S system described by

Tp = Z pi(ey) (Ases + Bi(ug + f))

=1
yf—foJer
where
-2 1 1 -3 2 2
A = 1 -3 0 , Ay = 0 -3 0
2 1 -8 2 -4
0 1
B = 1 , Ba=| 11,
0.25 0

dy1(t) =
f@(t), the system can be transformed into an augmented

02[1 1 1

Loa]om=[o]

The weighting functions depend on the first component of
the state vector; ; they are defined by

{ ul(xf) _ 1—t3112h(x})
pa(ry) =1—p(zs)

The input variation:(t) over the time is depicted in the figure
2 (bottom, continuous blue line). To apply the proposed FTC
strategy, the following reference model is considered

&= pi(z) (Aiz + Biu)
=1
y=Cx

(63)
(67)

(68)

The fault f(¢) is a time varying signal at = 5. Solving the
LMIs in theorem 1 results in the following matrices

091 0.11 0.04
X,=1]011 093 —0.04 |,
0.04 —0.04 0.44
1.53  —0.31 0.50
P,=| —031 304 -039 |,
0.50 —0.39 0.95
—1.93 4.58 —3.39 5.12
Hy=| =319 627 |, His=| —3.27 6.67 |,
(64) —5.35 1.22 —4.47 2.74
Hy = [ 4.885 0.000 |, Hop=[3.771 1.114 |,

Ky =1]0.004 0.024 —0.004 ],

Kip=1[0.003 0.019 —0.004 ]

65 . . . .
(65) The proportional-integral observer provides estimatedest

and faults. In the figure 2 (top) the real fault and its estemat
are depicted. The state estimation errors (resp. the state
tracking errors) are displayed on the top (resp. bottom) of
figure 3. The figures 4 compares the state variables of the
reference model, of the faulty system without FTC and the
&ulty system with FTC. One can see that the state variables

the system affected by fault with FTC is closed to the
reference whereas the faulty system with nominal control
deviates.

V. CONCLUSION

This paper is dedicated to the design of a nonlinear fault
tolerant control law. The considered systems are modeled
in the Takagi-Sugeno fuzzy structure with unmeasurable
premise variables. The strategy is based on the use of a
reference model which is the model of the system in the
fault-free case. The proposed control law is then desigoed t
minimize the deviation of the system state compared to the
reference state, even in the presence of fault(s). Thisaont
’ law uses the nominal control input developed for the system
in fault-free case and two additional terms. The first term is
related to the estimated fault and the second one correspond
to the trajectory tracking error. The stability is studiedhw
the Lyapunov theory and a quadratic function that allows to

(66)



derive conditions ensuring the convergence of the state and
fault estimation errors and trajectory tracking error toiva

] zero. The existence conditions are expressed in terms of
T et LMI that can be solved with classical dedicated softwares.
i The future works may be oriented, on the one hand, to
the relaxation of these conditions by using polyquadratic
or non-quadratic Lyapunov functions. On the other hand,
the assumption of open-loop stability (needed for solving
the LMI problem given in theorem 1) should be relaxed.
In addition, it is interesting to develop the FTC control law
by taking into account modeling uncertainties, multiplica
tive faults and some external perturbations, and consigeri
nonlinear outputs of the system. Real applications will be
developed in future works.
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