
Actuator Fault diagnosis: H∞ framework

with relative degree notion

D. Ichalal ∗ B. Marx ∗∗ D. Maquin ∗∗ J. Ragot ∗∗

∗ Evry Val d’Essonne University, IBISC-Lab, 40, rue de Pevoux,
91020, Evry Courcouronnes, France (email:

dalil.ichalal@ibisc.univ-evry.fr
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Abstract: A new actuator fault diagnosis and estimation approach is proposed for dynamical
systems. The main contribution consists in enhancing the fault detection with a new observer
that takes into account the relative degree of the output of the system with respect to the fault.
The Single Input Single Fault (SIFO) case is considered to present the approach and an extension
to systems with multiple outputs and multiple faults. The convergence of the proposed residual
generator is analyzed using the Lyapunov theory which can be expressed straightforwardly
in terms of Linear Matrix Inequalities (LMIs). Numerical examples are provided in order to
illustrate the proposed approach.

1. INTRODUCTION

These last years, the problem of fault diagnosis in dynam-
ical systems has taken an important place in engineering
control. This is due to the great demand in high per-
formance control systems even in the presence of faults.
For example, in industrial production and transportation
fields, the systems should operate without time discon-
tinuity in order to meet demand and to avoid delays
that may cause considerable loss of money. Furthermore,
systems must be designed to ensure the safety of the
human operator and system itself such as in aeronautics
and aerospace vehicles. The components of the system
(actuators, sensors,...) may be affected by a fault which
can cause some unpleasant repercussions on the system
and the human operator. Therefore, the control systems
should be designed by taking into account the faulty sce-
narios. Some results have been reported in the context
of fault diagnosis (fault detection, isolation and estima-
tion) using different approaches: namely, signal processing,
model-based, soft computing approaches,..., (Patton et al.
[2001],Gertler [1998],Frank and Ding [1997]). They aim to
monitor the system and provide some information to be
used in the control task to compensate the faults and
preserve the healthy system functioning with adequate
fault tolerant controllers.

In the context of model-based fault diagnosis, the H∞

approach is one of the most interesting techniques in
designing residual generators that provide fault indicators
and allow to detect, isolate and estimate the magnitude of
the faults. The presence of disturbances and measurement
noises may affect the problem of fault detection and
isolation, by masking the effect of the fault, which causes
a delay in the detection of the fault and hence may lead
to disaster consequences. Therefore, the H∞ framework
has been extended by using the H− performance index
in order to enhance the sensitivity of the fault on the

residual signal. Several interesting results are reported in
the literature. In Chadli et al. [2013], the H−/H∞ has
been exploited in order to generate residual signals that are
made sensitive as possible for the faults and less sensitive
as possible to the disturbances and the measurement
noises. In Ichalal et al. [2014], the min/max problem
is transformed into a simple minimization problem by
introducing a filter that aims to enhance the sensitivity of
the residual signal to the fault and minimizes the effect of
the disturbances. In Mazars et al. [2008], a reference model
is used in order to shape the response of the residual signal.
An adequate choice of the reference model can significantly
enhance the sensitivity of the residual signal to the fault.

After this brief bibliography, it has been noted that, in
general, the same faults affecting the state equation affect
also the output equation. This commonly used assumption
allows to guarantee the regularity assumption needed in
the H∞ framework, which lead to good performances of
the residual generators. However, in real systems, actuator
faults are different of the sensor ones, then, the regularity
assumption is not satisfied, hence, degraded performances
of the residual generator are obtained which affect the
fault sensitivity. A solution to this issue is given in Ichalal
et al. [2014] by perturbing the output of the system with
the actuator faults and a small parameter. Acceptable
performances are then obtained regarding to the fault
sensitivity, but these performances depend on the fixed
small parameter.

In this paper, a new solution for the problem of actuator
fault detection and isolation is proposed by using the
relative degree notion. This work is a continuation of the
result given in Ichalal et al. [2014]. The use of relative
degree notion aims to define new auxiliary outputs de-
pending on the actuator faults. Indeed, by differentiating
the outputs of the system according to the relative degrees
with respect to the faults, new outputs can be generated



and the system with the new output vector satisfies the
regularity condition. Of course, the implementation of the
proposed approach is based on time derivatives of the
noisy outputs which are obtained by the recent robust
algorithms that provides high order time derivatives with
good convergence properties and insensitivity to measure-
ment noises. For example, one can cite the High Order
Sliding Mode Differentiator (HOSMD) having a finite time
convergence property Levant [2003], the Non-Asymptotic
algebraic differentiator in Fliess et al. [2008], the Linear
Time Varying differentiator in Ibrir [2003] and the High
gain differentiator in Kalsi et al. [2010]. In this work, the
HOSMD is used.

Throughout the paper, the following definitions and lem-
mas will be used.

Definition 1. Relative Degree. Isidori [1995] Consider the
linear system

ẋ(t) = Ax(t) + Ef(t), y(t) = Cx(t) (1)

where x ∈ Rn is the state vector, f ∈ R is the fault signal
and y ∈ R is the output signal. The relative degree of the
system (1) is the number r satisfying

{

CAi−1E = 0, ∀i = 1, ..., (r − 1)
CAr−1E %= 0

(2)

In other words, the relative degree corresponds to the
number of successive time derivatives of the output to
obtain an equation that involves the fault signal f

y(r)(t) = CArx(t) + CAr−1E
︸ ︷︷ ︸

$=0

f(t) (3)

Definition 2. Bounded Real Lemma. Boyd et al. [1994] For
the system

ẋ(t) = Ax(t) + Ef(t), y(t) = Cx(t) +Df(t) (4)

The system (4) is stable and satisfy the conditions
{

lim
t→+∞

y = 0 if f = 0

‖y(t)‖2 < γ ‖f‖2 if f %= 0
(5)

if the following LMI is satisfied




ATP + PA PE CT

ETP −γI DT

C D −γI



 < 0 (6)

with P , a symmetric and positive definite matrix. Further-
more, if γ > 0 is minimized, the transfer from f to y is
also minimized.

2. PROBLEM STATEMENT AND MOTIVATION

Let us consider the linear system subject to an actuator
fault {

ẋ(t) = Ax(t) + Ef(t)
y(t) = Cx(t) (7)

where x(t) ∈ Rn is the state vector, f(t) ∈ R is the
actuator fault and y(t) ∈ R is the system output. The
matrices A, E and C are real constant with appropriate
dimensions.

Note that without loss of generality, the control input of
the system is omitted (i.e. u(t) = 0), the extension to
systems having u(t) %= 0 is straightforward. Assume that
the output y(t) has a relative degree r with respect to the
fault f(t) and the system is observable (i.e. the pair (C,A)
is observable).

Classically, an H∞ Residual Generator is described by the
following equations







˙̂x(t) = Ax̂(t) + L(y(t)− ŷ(t))
ŷ(t) = Cx̂(t)
r(t) = M(y(t)− ŷ(t))

(8)

without taking into account the relative degree of the
system. The matrices L and M are real constant to
be determined (For the Single Fault and Single Output
system, M is reduced to a scalar variable). In order to
make the residual r(t) sensitive to the fault f(t), a virtual
residual re(t) can be defined by the equation

re(t) = r(t)− f(t) (9)

Let us define the state estimation error e(t) = x(t)− x̂(t).
The system generating the virtual residual signal re(t) is
then described as follows

{

ė(t) = (A− LC) e(t) + Ef(t)
re(t) = MCe(t)− f(t) (10)

Consequently, the gain matrices L and M should be
designed in such a way to minimize the effect of f(t) with
respect to re(t). It is then clear that if re(t) → 0, the real
residual signal r(t) tends to the fault f(t) i.e. r(t) → f(t)
which allows to detect the fault f(t) (note that if re(t) = 0,
we have r(t) = f(t) which provides the fault estimation,
this is the ideal case which cannot be achieved by the H∞

approach).

In standard H∞ framework, the matrices L and M of the
system (10) should be determined in such a way to satisfy
the following constraints

{
lim

t→+∞
re(t) = 0 if f(t) = 0

‖re(t)‖2 < γ ‖f(t)‖2 if f(t) %= 0
(11)

In the presence of the fault f(t), the sensitivity of r(t)
with respect to f(t) is better when the positive real γ is as
small as possible. By using the Bounded Real Lemma, the
problem of determining the matrices L and M is expressed
as an optimization problem given by

min
P,K,M

γ̄

s.t. (
ATP + PA− CTKT

−KC PE CTMT

ETP −γ −1
MC −1 −γ

)

< 0 (12)

where P = PT > 0. After solving the optimization prob-
lem, the matrices of the residual generator are obtained by
L = P−1K and M is obtained directly. The attenuation
level is given by γ.

By analyzing the LMI (12), it appears that under the
observability condition, the LMI can admit a solution.
Then, if the LMI is negative definite, we have

(

−γ −1
−1 −γ

)

< 0 (13)

which is equivalent, by Schur Complement, to γ > 1. Then
the best value for γ is 1 + ε where ε is a positive small
number. This illustrates clearly the limitation of such an
approach.

In this paper the H∞ approach is enhanced by exploiting
an intrinsic notion, of the system, which is the relative
degree. The motivation of the proposed approach is the
fact, that recently, interesting and efficient approaches
were proposed to estimated the high order time derivatives



of a signal. Namely, the approaches based on sliding mode
theory which provide an estimate of a finite order time
derivatives of a given signal in finite time Levant [2003].
Another interesting approach is the numerical differentia-
tor proposed in Fliess et al. [2008] which provide also a
good non-asymptotic estimation of the time derivatives.
Finally, the third interesting approach is the asymptotic
one given in Ibrir [2003] which is based on high gain
notion and Linear Time Varying differentiator. The time
derivatives obtained by these approaches are better than
the classical differentiators which are very sensitive to the
noises affecting the signal.

3. H∞ RESIDUAL GENERATOR WITH RELATIVE
DEGREE CONSIDERATION

In this section, a simple approach is proposed in order to
enhance the performances of the H∞ Residual Generator
and overcome the problem of the the attenuation level γ
greater than 1. Let us consider the system (7), where the
relative degree is r. This means that

y(r)(t) = CArx(t) + CAr−1Ef(t) (14)

Now, let us consider the new output ỹ(t) defined by

ỹ(t) =








y(t)
ẏ(t)
...

y(r)(t)








=







C
CA
...

CAr







︸ ︷︷ ︸

C̃

x(t) +







0
0
...

CAr−1E







︸ ︷︷ ︸

R

f(t)

(15)
The system with the new generated output becomes

{

ẋ(t) = Ax(t) + Ef(t)
ỹ(t) = C̃x(t) +Rf(t)

(16)

The proposed residual generator is






˙̂x(t) = Ax̂(t) + L(ỹ(t)− ˆ̃y(t))
ˆ̃y(t) = C̃x̂(t)
r(t) = M(ỹ(t)− ˆ̃y(t))

(17)

By defining the state estimation error e(t) = x(t) − x̂(t)
and the virtual residual signal re(t) = r(t)−f(t), it follows

{

ė(t) =
(

A− LC̃
)

e(t) + (E − LR)f(t)

re(t) = MC̃e(t) + (MR− 1) f(t)
(18)

The objective is then to determine the matrices L and M
which ensure the conditions (11) with the minimization
of attenuation level γ for maximal sensitivity of r(t)
with respect to f(t). The following theorem provides an
optimization problem under LMI conditions aiming the
determination of L and M with minimal transfer from f(t)
to re(t) corresponding to a maximal transfer from f(t) to
r(t).

Theorem 1. Under the observability of the pair (C,A) and
the relative degree r (1 ≤ r ≤ n), the residual generator
exists if there exist a symmetric and positive definite
matrix P , gain matrices K and M and a positive scalar γ
solution to the following optimization problem

min
P,K,M

γ

s.t.
(

ATP + PA− C̃TKT
−KC̃ PE −KC̃ C̃TMT

ETP − C̃TKT
−γ RTMT

− 1
MC̃ MR− 1 −γ

)

< 0 (19)

The gain L of the residual generator is obtained from the
equation L = P−1K. The attenuation level γ describes the
sensitivity of r(t) with respect to f(t). The smallest is γ
the greatest is the sensitivity.

Proof. The proof of the theorem 1 is straightforward. It is
based on the Bounded Real Lemma applied to the system
(18). This allows to obtain the following inequality
(

ATP + PA− C̃TLTP − PLC̃ PE − C̃TLTP C̃TMT

ETP − PLC̃ −γ RTMT
− 1

MC̃ MR− 1 −γ

)

< 0

(20)

Finally, by considering the change of variable K = PL
and the objective of minimizing the transfer from f(t) to
re(t), the optimization problem given in the theorem 1 is
obtained.

The negativity of (19) implies that the following inequality
holds (

−γ RTMT − 1
MR− 1 −γ

)

< 0 (21)

which is equivalent to

γ2 >
(

RTMT − 1
)

(MR− 1) (22)

Since this paper considers only systems with single fault
and single output, the term (MR− 1) is just a scalar, it
follows

γ2 > (MR− 1)2 (23)
Taking the square root, on obtains

γ > MR− 1 (24)

Since R %= 0 due to the relative degree, it is then possible
to chose M in such a way to have (MR − 1) → 0. Thus,
the parameter γ > 0 may takes values small than 1 which
enhance the residual sensitivity with respect to the fault
compared to the classical approach where γ > 1.

4. ILLUSTRATIVE EXAMPLE

To illustrate the performances of the proposed residual
generator design approach, let us consider the system (7)
with the matrices

A =

(

0 1
−1 −2

)

, E =

(

0
1

)

, C = ( 1 0 ) (25)

The system is observable and the output y(t) have a
relative degree 2 with respect to the fault f(t).

4.1 Classical approach

For the classical approach, solving the optimization prob-
lem under the LMI constraint (12) leads to the following
solution

P = 104 ×

(

2.082 −0.0009
−0.0009 0.0000

)

,

L = 106 ×

(

0.0009
1.9286

)

, M = −9.2522

The obtained attenuation level is γ = 1.001 which is
greater than 1 as expected (see section 2). The figure 1
illustrates the fault and the associated residual obtained by
the classical H∞ residual generator. It can be seen that the
residual detects the fault but with a very small magnitude
(around 5× 10−6). This leads, in noisy measurements, to
a non-detection of the fault because the residual risks to
be masked by the measurement noises.



0 5 10 15
0

0.5

1

1.5

time (s)

f(
t)

 

 

Fault signal f(t)

0 5 10 15
0

0.5

1 x 10−5

time (s)

|r
(t
)|

 

 

Residual signal |r(t)|

Fig. 1. Fault and residual signal (classical approach)

4.2 Proposed approach

For the proposed approach, first, the relative degree is
computed and it is given by r = 2. From this information,
the design approach needs the knowledge of both the
first and the second time derivatives of the output y(t).
These derivatives are obtained by the third order sliding
mode differentiator (Levant [2003]). After computing the
matrices C̃ and R as in equation (15), the optimization
problem given in the theorem 1 provides the following
results

P =

(

1.1417 0
0 1.1417

)

,

L = 103 ×

(

1.0005 0 0
0.0010 1.0005 0.0010

)

, M = ( 1 2 1 )

The obtained attenuation with the proposed approach is
around 10(−11) but we deliberately limited it to γ = 10(−3)

by replacing the condition γ > 0 by γ > 10(−3). The figure
2 illustrates the fault and the associated residual signal
obtained with the proposed approach. It can be seen that
the fault is well detected with a magnitude close to that
of the fault (i.e. 1). Note that the gain matrix obtained by
the classical approach has values around 106 while those
obtained by the proposed approach are around 103.
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Fig. 2. Fault and residual signal (proposed approach)

In order to test the performances of the proposed approach
in noisy measurements, let us consider the same system
and add a measurement noise ω(t) with is a centered
random signal and bounded by [−0.01, 0.01]. The figure
3 illustrates the residual signals obtained by the two ap-
proaches. On can see that, the classical approach provides
a residual signals which is masked by the effect of the
measurement noise, while the proposed approach provides
a residual signal that detects clearly the fault.
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Fig. 3. Comparison of the two approaches with noisy
measurements

4.2.0.1. Frequency analysis In is interesting to see the
performances of the proposed approach in the frequency
domain. For that purpose, let us compute the transfer
functions from f(t) to r(t) for the two approaches, it
follows

H(s) = MC (sI −A+ LC)−1 E =
−0.07883

s2 + 2.509 + 4.664
(26)

and

H̃(s) = M̃C̃
(

sI −A+ L̃C̃
)−1

(E − L̃R̃) ≈ 1 (27)
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Fig. 4. Frequency analysis of both the classical and pro-
posed RG

From the transfer functions and the Bode diagrams dis-
played in figure 4, it can be seen that with the classical
approach, the transfer from f(t) to r(t) is attenuated while
the transfer of the proposed approach is equal to 0dB
which means that the residual obtained by the proposed
approach is close to the fault (this can be seen as a fault
estimation, there is a direct transfer from f(t) to r(t)).

5. DISCUSSION ON EVENTUAL EXTENSIONS TO
SYSTEMS WITH U(T ) %= 0

In the context of controlled systems, the control input u(t)
is different from zero. In this case the system (7) becomes

{

ẋ(t) = Ax(t) +Bu(t) + Ef(t)
y(t) = Cx(t) (28)

In order to extend the proposed residual generator, two
cases can be considered. If the output has the same relative
degree with respect to both u(t) and f(t), the approach
is exactly the same. The rth time derivative of y(t) is
described by

y(r)(t) = CArx(t) + CAr−1Bu(t) + CAr−1Ef(t) (29)



The new output ỹ(t) is then defined as follows

ỹ =







C
CA
...

CAr







x+







0
0
...

CAr−1B







u+







0
0
...

CAr−1E







f (30)

Since the control input is known, the residual generator
error dynamics coincides exactly with the equation (18),
and the same approach is adopted. This is also the case
if the relative degree of the output with respect to f(t) is
less than the relative degree with respect to the input u(t).

Consider now the case where the relative degree of the
output with respect to f(t) is greater than the relative
degree with respect to the input u(t). Let us denote r and
ru respectively, the relative degrees with respect to f(t)
and u(t) with r > ru. The time derivatives of the output
can be written as:

ỹ =















C
CA

CA2

...
CAru

CAru+1

...
CAr















x+















0
0
0
...

CAru−1B
CAruB

...
CAr−1B















u+















0
0
0
...
0

CAru−1B
...

CAr−2B















u̇+ ...

+















0
0
0
...
0
0
...

CAr−2B















u(r−ru) +















0
0
0
...
0
0
...

CAr−1B















f (31)

From this equation, it is necessary to estimate the time
derivatives of the control input u(t) which will be used
by the residual generator. These time derivatives can be
obtained in the same manner as those of y(t). But, it is
possible to proceed differently by avoiding the estimation
of the time derivatives of the input.

In order to overcome the computation of the time deriva-
tives of the input u(t), let us consider the system (28) and
the intermediate system

{

ṡ(t) = As(t) +Bu(t)
ys(t) = Cs(t) (32)

By defining the error z(t) = x(t)− s(t), it follows
{

ż(t) = Ax(t) + Ef(t)
yz(t) = y(t)− ys(t) = Cz(t) (33)

The system (33) is, then, free from the input u(t) and it
is more interesting to construct the residual generator for
this system instead of (28). It is then clear that using this
intermediate system, the time derivatives of the input are
no longer needed.

6. EXTENSION TO MULTI-FAULTS AND
MULTI-OUTPUTS SYSTEMS

In this section, an extension of the presented idea to
the case of multi-faults and multi-outputs systems is
considered. Let us consider the MIMO system

{

ẋ(t) = Ax(t) + Ef(t)
y(t) = Cx(t) (34)

where x(t) ∈ Rn, f(t) ∈ Rnf and y(t) ∈ Rny are the state,
fault and output vectors respectively, and A, E, and C are
constant real matrices. The system (34) can be expressed
as follows









ẋ(t) = Ax(t) +

nf
∑

i=1

Eifi(t)

y(t) = Cx(t)

(35)

where fi(t), i = 1, ..., nf are the components of the vector
f(t) with the associated vectors Ei which are the different
columns of E. By defining the new output vector

ỹ(t) = C̃x(t) + R̃f(t) (36)

where

C̃ =



















C1

C1A
...

C1A
r1

C2

C2A
...

C2A
r2

...
CnyA

rny



















, R̃ =


















0 · · · 0
0 · · · 0
0 · · · 0

C1A
r1−1E1 · · · C1A

r1−1Enf

0 · · · 0
0 · · · 0
...

...
...

C2A
r1−1E1 · · · C1A

r1−1Enf

...
...

...

CnyA
rny−1E1 · · · CnyA

rny−1Enf


















The matrix Cj , j = 1, ..., ny denotes the jth row of the
matrix C. The system with the new output vector is then
expressed as follows









ẋ(t) = Ax(t) +

nf
∑

i=1

Eifi(t)

ỹ(t) = C̃x(t) + R̃f(t)

(37)

The proposed residual generator is then expressed by










˙̂x(t) = Ax(t) + L̃
(

ỹ(t)− ˆ̃y(t)
)

ˆ̃y(t) = C̃x̃(t)

r(t) = M̃
(

ỹ(t)− ˆ̃y(t)
)

(38)

Let us consider the estimation error e(t) = x(t)− x̂(t), its
dynamics are described by

{

ė(t) =
(

A− L̃C̃
)

e(t) + (E − LR̃)f(t)

r(t) = M̃C̃e(t) + M̃R̃f(t)
(39)

The objective is to make each component of r(t) sensitive
to one and one fault of the vector f(t). For that purpose,
let us define the virtual residual signal vector, defined
by re(t) = r(t) − f(t). The global system can be, then,
expressed as follows







ė(t) =
(

A− L̃C̃
)

e(t) + (E − LR̃)f(t)

re(t) = M̃C̃e(t) +
(

M̃R̃− Inf

)

f(t)
(40)

The problem is then transformed into a minimization
problem that minimizes the effect of f(t) on re(t). In
this formulation, each residual signal ri(t), i = 1, ..., nf

is sensitive only to the fault fi(t). This provides fault
isolation (even fault estimation if the transfer is close to
zero).



The objective of designing the gains L̃ and M̃ are obtained
by solving the optimization problem given in the theorem
2.

Theorem 2. Under the observability of the pair (C,A)
and the relative degree vector {r1, ..., rny

}, the residual
generator exists if there exist a symmetric and positive
definite matrix P , a gain matrix K and a positive scalar
γ solution to the following optimization problem

min
P,K,M

γ

s.t.
(

ATP + PA− C̃T K̃T
− K̃C̃ PE − K̃C̃ C̃T M̃T

ETP − C̃T K̃T
−γInf RT M̃T

− Inf

M̃C̃ M̃R− Inf −γInf

)

< 0

(41)

The gain L of the residual generator is obtained from the
equation L = P−1K. The attenuation level γ describes the
sensitivity of r(t) with respect to f(t). The smallest is γ
the greatest is the sensitivity.

Proof. The proof is similar the one provided for the
theorem 1

7. DISCUSSIONS

Notice that the theorem 2 considers the worst case. How-
ever, with a simple analysis on the system (40), it can be
concluded that:

(1) If the condition

rank

([

C̃ R̃
0 Inf

])

= rank
([

C̃ R̃
])

(42)

Then there exists a matrix M such that
{

MC̃ = 0
MR̃ = Inf

(43)

Consequently, the system (40) becomes
{

ẋ(t) =
(

A− L̃C̃
)

e(t) + (E − LR̃)f(t)

re(t) = 0
(44)

In this case, it appears that re(t) is exactly zero which
means that there is a direct transfer from f(t) to r(t)
i.e. r(t) = f(t). Therefore, theoretically, the matrix L
is not needed, it can be fixed to zero. In addition, the
observability and the detectability of the pair (A, C̃)
is no longer required. However, in practice, since the
time derivatives of the outputs are estimated exactly
in finite time T %= 0, the gain L should be computed to
ensure stability of the matrix (A−LC) which requires
at least the detectability of the pair (A, C̃). But if the
matrix A is Hurwitz, the gain L can be fixed to zero.

(2) If the rank condition above is not satisfied but, since
rank(R̃) = nf , then there exist matrices M and L
such that LR̃ = E and MR̃ = Inf

, and in addition, if
the matrix L stabilizes the matrix A − LC, the the
system (40) becomes

{

ẋ(t) =
(

A− L̃C̃
)

e(t)

re(t) = MC̃e(t)
(45)

which is stable, and the virtual residual signal re(t)
converges asymptotically to zero which means that
the real residual vector r(t) converges asymptotically
towards f(t).

(3) Finally, if the conditions cited above are not satis-
fied, the conditions of theorem 2 can be used. This
means that there is nor direct fault transfer neither
asymptotic fault transfer but only a bounded transfer
characterized by the attenuation level γ.

8. CONCLUSION

This paper addresses a new approach for actuator fault
detection by using the H∞ framework combined to the
notion of relative degree. It is proven that exploiting the
property of the relative degree provides better results com-
pared to the classicalH∞ approach. The idea is to compute
the time derivatives of the output signal up to the relative
degree, this aims to define a new output vector gathering
all the computed time derivatives. Using this reasoning,
the limitation γ > 1 of the classical approach is avoided,
and better performances residual generator can be ob-
tained. The approach is motivated by the recent advances
in robust numerical derivation of a given signal. Future
work will concern, firstly, the extension of the approach
for Linear Parameter Varying systems and application
for fault tolerant control. Secondly, the approach will be
extended for systems affected simultaneously by faults and
perturbations.
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