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Abstract— This paper addresses a new method to overcome
the unmeasurable premise variables in TS nonlinear discrete
time systems for observer design. It is known that a TS system
can be obtained directly from a nonlinear one by using the
sector nonlinear transformation in a given compact set of
the state space. However, this procedure often leads to TS
systems having premise variables depending on one or more
unmeasurable states. Clearly, the observer design for such a
class of TS systems is more difficult than designing observers for
TS systems having measured or known premise variables. The
objective of this paper is to use the immersion approach before
using the sector nonlinear transformation in order to obtain
a TS system with measured premise variables. In addition
the proposed immersion technique leads to the use of an
augmented state vector which first components are directly the
state variables of the original system avoiding the computation
of an inverse transformation. Example results are provided in
order to illustrate the proposed approach.

I. INTRODUCTION

Using Takagi-Sugeno system theory in control and ob-
servation is one of the most explored approaches to handle
nonlinear systems in the last forty years from the seminal
work of [14]. The interest of the TS structure is in its
simple formulation of the nonlinear system in a polytopic
form [15]. Indeed, such a structure allows the extension
some tools and theories from linear system domain to the
nonlinear one such as LMIs, Lyapunov stability analysis,
control and observation. This results to an active domain
of research for nonlinear systems in both theoretical and
application point of views. The TS systems can be obtained
by different ways, namely, the identification techniques from
a set of input output measurements and fixed model struc-
ture [5], the linearization around several operating points
judiciously chosen and interpolated by adequate nonlinear
functions satisfying the convex sum property [13], and the
transformation from a nonlinear system by using the sector
nonlinear transformation [15]. The present work focuses on
the last method of obtaining TS systems.

Using the sector nonlinear transformation, two types of TS
systems can be obtained: the first one presents TS systems
having measurable premise variables (which depend on only
measured variables). The second type consists in TS systems
having premise variables depending, partly or completely,
on unmeasured states of the system. In the context of state
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observer design, the first class of TS systems is largely
explored and several results are provided, which is not
the case for the second class of TS systems. Nevertheless,
one can cite some results for such a class of TS systems,
for example, the first work dealing with this problem has
been reported in [1] which extends the well known Thau-
Luenberger observer [16] by using Lipschitz conditions on
the perturbation-like term due to the unmeasured premise
variables. This idea has been exploited in [12] for cascaded
systems and in [10] by assuming the Lipschitz conditions
of the weighting functions rather than the global Lipschitz
condition of the perturbation-like term. However, taking into
account the Lipschitz constants limits the applicability of
the approaches because the LMI conditions depend on the
Lipschitz constants and introduce a severe conservatism in
the existence of a solution to these LMIs. In order to relax
the conservatism of the Lipschitz-based approach, in [8],
[6], a new approach has been proposed by using the vector
differential mean value theorem. This approach reduces sig-
nificantly the conservatism related to the Lipschitz constant
but it may introduce a huge number of sub-models which
increases the computational complexity. More recently, other
approaches [11], [17] are provided to overcome the problems
of the cited techniques, it consists in leaving the asymptotic
or exponential convergence property of the state estimation
error and guaranteeing only bounded state estimation error
by usingL2 and Input-to-State Stability concepts (ISS). The
main advantage of such results is the obtention of LMIs free
from the Lipschitz constants and without adding additional
sub-models. The notion of bounded state estimation error
can also be found in [9] where the state estimation error is
transformed into a TS form with polytopic uncertainties due
to the unmeasurable premise variables.

In the context of discrete time TS systems with unmea-
surable premise variables, observation problem is not largely
studied which motivates the result of the present paper. The
main idea of this paper is to obtain a way to transform
the TS system with unmeasurable premise variables into an
equivalent TS system with measurable premise variables in
order to apply existing results.

From the above analysis, it can be seen clearly that the
observer design for TS systems with unmeasurable premise
variables is more complex and far from to be solved com-
pared to the case of TS systems with unmeasurable premise
variables. It is then natural to ask the following question:Be-
fore using the nonlinear sector transformation, is it possible
to transform, equivalently, the system in order to express it
into an quasi-LPV form where the parameters depend only



on measured variables? Of course, if such a transformation
exists, the use of the nonlinear sector transformation leads
to a TS system with measurable premise variables, and then,
the techniques developed for such systems can be applied.
This paper presents a first solution for this problem by
using dynamic state extension inspired from the immersion
techniques used in the nonlinear framework (see [2] and
references therein). Notice that, the proposed transformation
does not need the computation of the inverse transformation
to get the original state because this last is contained in the
new state vector.

II. M AIN RESULT

Let us consider the nonlinear system in the form
{

xk+1 = f (xk)+g(xk)uk

yk =Cxk
(1)

wherexk ∈R
n, uk ∈R

nu andyk ∈R
ny represents, respectively,

the state, the input and the output vectors of the system.f and
g are vector functions depending on the state vectorxk and
f (0) = 0. C is a known matrix with appropriate dimensions.

Classically, the sector nonlinear transformation is applied
to obtain an exact TS system in a compact setΩ of the state
space as follows [15]







xk+1 =
r
∑

i=1
hi(ξk)(Aixk +Biuk)

yk =Cxk

(2)

whereξk is the vector of premise variables and the matrices
Ai andBi are with appropriate dimensions and correspond to
the ith sub-model of the TS system.r is the number of sub-
models and the functionshi(ξk) are the weighting functions
depending on the premise variablesξk and satisfying the
convex sum property







r
∑

i=1
hi(ξk) = 1

0≤ hi(ξk)≤ 1,∀k, i = 1, ...,r
(3)

This transformation often leads to TS system where the
premise variablesξk depend partly or completely on un-
measured states. As explained in the introduction, designing
an observer when the premise variables are unmeasurable is
more difficult. The idea is then to transform the nonlinear
system into the form

{

zk+1 = A(yk,uk)zk +B(yk,uk)uk

yk = C zk
(4)

where zk ∈ R
N is a new state vector of dimensionN ≥ n

where the components ofxk are contained inzk. Conse-
quently, if zk is estimated the original statexk is obtained
directly from zk. The system (4) can then be expressed in
TS form by using the nonlinear sector transformation. One
obtains







zk+1 =
r′

∑
i=1

hi(yk,uk)(Aizk +Biuk)

yk = C zk

(5)

where the matricesAi, Bi and C are with appropriate
dimensions and the weighting functions depend only on the
measured variablesyk and uk. r′ represents the number of
the sub-models of the new TS model. In such a case the
proportional observer takes the form







ẑk+1 =
r′

∑
i=1

hi(yk,uk)(Aiẑk +Biuk +Li(yk − ŷk))

ŷk = C ẑk

(6)

By defining the state estimation errorek = zk− ẑk, its dynam-
ics obeys to the difference equation

ek+1 =
r′

∑
i=1

hi(yk,uk)(Ai −LiC )ek (7)

The stability of such error system is largely studied and
interesting results are provided based on LMI formalism
in order to design the gainsLi [4], [3]. These LMIs are
obtained by using different LMI conditions and relaxation
mechanisms.

A. System transformation by state extension

In this section, the approach to transform the system (1)
into the form (4) will be given.

1) Step 1: Initialize the first new variables from the state
vector z(i)k = x(i)k , i = 1, ...,n.

2) Step 2: For each new variable, compute its value at
k+1 (exactly the same equations as the original system
(1)) and separate all the functions depending only on
measured variablesyk anduk and define the remaining
nonlinear functions as new variableszl

k, l > n. By
computing the values of these variables atk + 1 it
follows

z(l)k+1 =
l

∑
i=1

al,i(yk,uk)z
(i)
k

+
s

∑
i=l+1

al+1,i(yk,uk)z
(i)
k +ϕl(yk,uk) (8)

where z(i)k , i = l + 1, ...,s denote other defined new
variables. The functionsal,i, al+1,i and ϕl(yk,uk) are
scalar and depend only on measured variables. The
step 2 is repeated for all the defined variables and the
parameters converges, if a transformation exists, toN
the dimension of the new state vectorzk.

3) Step 3: The algorithm stops when the time derivative
of the lth new state is free from nonlinear functions
depending on the unknown states.

By using this procedure, the system described in equation (4)
is obtained and by using the sector nonlinear transformation
in a compact set, one obtains the TS system (5) having
only measurable premise variables. Then the design of the
observer follows the classical approach.



Example: Let us consider the nonlinear discrete time
system derived from the Duffing map















x(1)k+1 = x(2)k

x(2)k+1 =−2
(

x(1)k

)3
+2x(1)k +0.3x(1)k x(2)k

yk = x(2)k

(9)

It is clear that using directly the sector nonlinear transfor-
mation leads, inevitably, to a TS system with unmeasurable
premise variables. As an example, one has the following
quasi-LPV system

xk+1 =

[

0 1

0.3x(2)k +2−2
(

x(1)k

)2
0

]

xk (10)

By considering the premise variableξk = 0.3x(2)k + 2−

2
(

x(1)k

)2
, a TS model can be obtained. However, the premise

variable depend on the unmeasured statex(1)k which com-
plicates the design of a TS observer. As the new state is
free from nonlinear function of the unmeasured states, the
algorithm stops.

Now, by using the proposed approach, a TS model with
premise variables depending only on measured variables is
obtained as follows:

1) Step 1: Initialize the new variablesz(1)k = x(1)k and

z(2)k = x(2)k . One obtains the system






z(1)k+1 = z(2)k

z(2)k+1 =−2
(

z(1)k

)3
+2z(1)k +0.3z(1)k z(2)k

(11)

which can be expressed as follows






z(1)k+1 = z(2)k

z(2)k+1 =−2
(

z(1)k

)3
+2z(1)k +0.3ykz(1)k

(12)

2) Step 2: The function
(

z(1)k

)3
is nonlinear and depend

on the unmeasured statez(1)k = x(1)k . Then, we generate

the new variablez(3)k =
(

z(1)k

)3
which leads to

z(3)k+1 =
(

z(1)k+1

)3
=
(

z(2)k

)3
(13)

The obtained system is then given in the form














z(1)k+1 = z(2)k

z(2)k+1 =−2z(3)k +2z(1)k +0.3z(1)k z(2)k

z(3)k+1 =
(

z(2)k

)3
(14)

An in quasi-LPV form as follows

zk+1 =





0 1 0
2+0.3yk 0 −2

0 (yk)
2 0



zk (15)

yk =
[

0 1 0
]

zk (16)

By considering the premise variables
{

ξ (1)
k = yk

ξ (2)
k = (yk)

2 (17)

and the fact that 0.4 ≤ yk ≤ 1, one obtains the TS model
with measurable premise variables in the form (5). Then,
by using the observer (6) one obtains the state estimation
error dynamics (7). In this example the weighting functions
depend only on the outputyk. Finally, by using the Lyapunov
function V (ek) = eT

k Pek where P = PT > 0, simple LMI
conditions are obtained as follows: If there exist a symmetric
positive definite matrixP and gain matricesKi, i = 1, ...,4
such that the LMIs

[

−P A T
i P−C T KT

i
PAi −KiC −P

]

< 0 (18)

i = 1, ...,4

The gains of the observer are obtained byLi = P−1Ki, i =
1, ...,4. After solving these LMIs, the following gains are
obtained

L1 = L3 =





1
0
1



 ,L2 = L4 =





1
0

0.16





The figure 1 illustrates the chaotic behavior of the Duffing
map while the figure 2 shows the real states and the cor-
responding estimated states. Notice that estimatingz(1)k and

z(1)k corresponds to estimatex(1)k and x(1)k which means that
no inverse transformation is needed.
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Fig. 1. Chaotic behavior of the Duffing map

Remark 1: An important remark is that the initial con-
ditions can be chosen arbitrarily in this case because they
do not affect the convex sum property. As can be seen
in the case of unmeasurable premise variable TS systems,
the unmeasured states are replaced by the estimated ones.
Therefore, the initial conditions of the observer should be
chosen in the compact set used to obtain the TS system.
Notice that even if the initial conditions are in the compact
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Fig. 2. State estimation

set, it may happen that the convex sum property will be
lost in the transient phase and then the stability is no
longer satisfied. By using the proposed approach, even if
the initial conditions are chosen outside of the compact
set (see the example), the convex sum property is always
satisfied because the weighting functions depend only on the
measured variableyk which varies in the domain[0.4,1].

B. Extension to PI observer design

In the previous section, only state reconstruction objective
is considered. The extension to the case of systems affected
by constant or piecewise constant unknown inputs can be per-
formed with the same algorithm. Indeed, since the unknown
input is constant, its dynamic is described asdk+1 = dk which
can be considered as an additional state in the original state
vector. From this assumption, the same algorithm can be used
to transform the system in the form (4) and then by using
the sector nonlinear transformation for the obtained system,
the TS form can be derived which has measurable premise
variables.

Example 2: Let us consider the same chaotic system as
in example 1 affected, in nonlinear manner, by the unknown
input dk as follows














x(1)k+1 = x(2)k

x(2)k+1 =−2
(

x(1)k

)3
+2x(1)k +0.3x(1)k x(2)k + x(1)k dk

yk = x(2)k

(19)

It can be seen that the unknown input is multiplied by the
unmeasured statex(1)k . By using the proposed algorithm, the
following state transformation is obtained











z(1)k

z(2)k

z(3)k

z(4)k











=













x(1)k

x(2)k
(

x(1)k

)3

x(1)k dk













(20)

which leads to the rigorously equivalent system






















z(1)k+1 = z(2)k

z(2)k+1 =−2z(3)k +2z(1)k +0.3z(1)k z(2)k + z(4)k

z(3)k+1 =
(

z(2)k

)3

z(4)k+1 = z(2)k dk

(21)

which takes the quasi-LPV form

zk+1 =









0 1 0 0
2+0.3yk 0 −2 1

0 (yk)
2 0 0

0 0 0 0









zk +









0
0
0
yk









dk

(22)

yk =
[

0 1 0 0
]

zk (23)

The matrices of the obtained model depend only on the
measured output and by considering the premise variables
ξ (1)

k = yk and ξ (2)
k = (yk)

2, a TS model with measurable
premise variables is obtained in the form







zk+1 =
4
∑

i=1
hi(yk)(Aizk +Bidk)

yk = C zk

(24)

In order to estimate the state vectorzk and the unknown input
dk, the following PI observer can be used























ẑk+1 =
4
∑

i=1
hi(yk)

(

Aiẑk +Bid̂k +Li(yk − ŷk)
)

d̂k+1 = d̂k +
4
∑

i=1
hi(yk)Hi(yk − ŷk)

ŷk = C ẑk

(25)

By considering the state and unknown input estimation errors
ek = zk − ẑk and sk = dk − d̂k, one obtains
[

ek+1

sk+1

]

=
4

∑
i=1

hi(yk)

[

Ai −LiC Bi

HiC I

][

ek+1

sk+1

]

(26)

Then the stability of the system generating the state and un-
known input errors can be studied by the classical Lyapunov
tools developed for TS systems with measurable premise
variables. In figures 3 and 4, both state and unknown input
reconstruction are illustrated. It can be seen that the states
and the unknown input are estimated asymptotically.

III. D ISCUSSIONS

The proposed approach is an answer to the question asked
in the introduction of this paper. From the examples, it can
be seen that it is possible to avoid the unmeasurable premise
variables in the TS model by extending the state vector of
the original system before using the nonlinear sector transfor-
mation. Then, the classical techniques of observer design for
TS systems with measurable premise variables can be used.
The proposed approach is adequate for nonlinear systems
where applying, directly, the sector nonlinear transformation
provides inevitably a TS system with unmeasurable premise
variables. In the following, some points are discussed:
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Fig. 3. State reconstruction in the presence of unknown input
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• Observer design for TS systems with unmeasurable
premise variables is done by replacing the unmeasured
states involved in the premise variables by the estimated
version. However, a particular attention should be taken
into account on the initial values of the observer which
must be in the compact set where the TS model is
valid in order to ensure that the convex sum property
of the weighting functions is satisfied. Unfortunately, in
some cases, even if the initial conditions of the observer
belong to the compact set, the convex sum property
may be lost in transient phase which may cause the
non negativity of the Lyapunov function variations and
then, the stability is no longer guaranteed. The proposed
approach solves this problem since the premise variables
depend on the measured variables which belong to a
compact set and do not change for different initial
conditions (see the examples 1 and 2).

• As a comparison to existing immersion techniques in
nonlinear systems, these lasts aim to immerse the orig-

inal system in a new state space where the obtained
systems present a particular structure. In addition, the
classical immersion techniques should be invertible in
order to express the states of the original system in
respect to the states of the immersed one. The pre-
sented algorithm aims only to express the system as
a LPV system with parameters depending on measured
variables and without any other particular structure for
the matrices of the LPV. Furthermore, the proposed
algorithm leads to a new state vector containing the
states of the original system, consequently, there is no
need to inversion of the transformation to recover the
original states.

• As for nonlinear sector transformation technique, the
dynamic state extension, presented in this paper, is
not unique. Then, the dynamic state extension should
be judiciously chosen in such a way to preserve the
observability property of the original system which is a
disadvantage compared to existing nonlinear immersion
techniques. Indeed, the immersion techniques transform
the system into an adequate new system with particular
structure ensuring the observability.

• Notice also that the proposed algorithm may present
an infinite number of iterations. For example, let us
consider the system















x(1)k+1 = x(2)k

x(2)k+1 =
(

x(2)k

)2

yk = x(1)k

(27)

By applying the proposed algorithm, the following new
states are obtained

z(3)k =
(

z(2)k

)2

z(4)k =
(

z(2)k

)4

z(5)k =
(

z(2)k

)8

...

(28)

which illustrates that the algorithm presents infinite number
of iterations, then, there is no solution for this system.
However, a solution can be obtained by using our previous
work in [7] by using the algebraic technique.

From these discussions, the proposed algorithm provides a
first solution to the problem of transformation of TS systems
with unmeasurable premise variable into an equivalent TS
system with measurable premise variables of dimension
greater than or equal to the dimension of the original TS
system. As illustrated by the examples, it can provide inter-
esting results. The discussed points above presents research
directions in order to obtain a systematic algorithm to obtain
equivalent TS system with measured premise variables and
preserves some properties of the original system such as
observability and detectability. In addition, it is interesting
to study the conditions under which such a transformation
exists which avoids the infinite number of iterations.



IV. CONCLUSIONS

In this paper, a new technique is proposed in order to
avoid the unmeasurable premise variables in the TS systems
obtained from a nonlinear model of the system. Classically,
the nonlinear models are transformed directly by using the
sector nonlinear transformation which often lead to TS
systems with premise variables depending on unmeasured
states. It is known that dealing with the problem of observer
design in such a situation is more complex than using TS
systems with measurable premise variables. It is then natural
to ask the question whether from the original nonlinear model
it is possible to obtain an equivalent nonlinear model for
which the nonlinear sector transformation provides a TS
system with premise variables depending only on measured
variables (input and output). This paper provides a solution
by using the dynamic state extension known as immersion
techniques in nonlinear framework. The difference between
the known immersion techniques and the proposed one is
that the state of the original system is contained in the new
state vector which avoids the inversion of the immersion. An
extension of the proposed approach for systems affected by
unknown inputs is provided. For future work, a deep analysis
of this approach will be performed in order to extend it to
more general systems. In addition, since the transformation
is not unique, the study will focus on the invariance property
in order to obtain equivalent nonlinear model that preserves
some properties of the original system such as observability
and detectability.
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