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Abstract— This paper addresses a new method to overcome observer design, the first class of TS systems is largely
the unmeasurable premise variables in TS nonlinear discrete explored and several results are provided, which is not
time systems for observer design. It is known that a TS system the case for the second class of TS systems. Nevertheless,

can be obtained directly from a nonlinear one by using the it Its f h | fTS ¢
sector nonlinear transformation in a given compact set of one can cite some resufts for such a class o systems,

the state space. However, this procedure often leads to TS for example, the first work dealing with this problem has
systems having premise variables depending on one or more been reported in [1] which extends the well known Thau-
unmeasurable states. Clearly, the observer design for such a |uenberger observer [16] by using Lipschitz conditions on
class of TS systems is more difficult than designing observers for the perturbation-like term due to the unmeasured premise

TS systems having measured or known premise variables. The . L . .
objective of this paper is to use the immersion approach before variables. This idea has been exploited in [12] for cascaded

using the sector nonlinear transformation in order to obtain ~ Systems and in [10] by assuming the Lipschitz conditions
a TS system with measured premise variables. In addition of the weighting functions rather than the global Lipschitz
the proposed immersion technique leads to the use of an condition of the perturbation-like term. However, takimga
augmented state vector which first components are directly the account the Lipschitz constants limits the applicabilify o

state variables of the original system avoiding the computation ..
of an inverse transformation. Example results are provided in the approaches because the LMI conditions depend on the

order to illustrate the proposed approach. Lipschitz constants and introduce a severe conservatism in
the existence of a solution to these LMIs. In order to relax
I. INTRODUCTION the conservatism of the Lipschitz-based approach, in [8],

b[_6], a new approach has been proposed by using the vector
(ﬂ' erential mean value theorem. This approach reduces sig

nonlinear systems in the last forty years from the semin%I icgntly the conservatism related to the Lipschitz camstg
work of [14]. The interest of the TS structure is in its. ut it may introduce a huge number of sub-models which

increases the computational complexity. More recentlyet

simple formulation of the nonlinear system in a polytopic )
forn? [15]. Indeed, such a structure );Ilows the Fe)xt)énsﬁoﬁppro"’mhes [11], [17] are provided to overcome the problems

some tools and theories from linear system domain to thoef the cited Fechnlques, it consists in leaving the asyrlnpto_t
or exponential convergence property of the state estimatio

nonlinear one such as LMIs, Lyapunov stability analysis i o
yap y y rror and guaranteeing only bounded state estimation error

ntrol an rvation. This resul n iv mai . .
control and observatio S results to an active do aéy using.%> and Input-to-State Stability concepts (ISS). The

of research for nonlinear systems in both theoretical an ain advantaae of such results is the obtention of LMIS free
application point of views. The TS systems can be obtaine;H ' v 9 u Uits | :

by different ways, namely, the identification techniquesir rom the Lipschitz constants and without adding additional

a set of input output measurements and fixed model stru%gb'mOdels' The n.otlon of bounded state ‘?S“”Ta“o” error
can also be found in [9] where the state estimation error is

ture [5], the linearization around several operating point . . ) o
judiciously chosen and interpolated by adequate nonline Iansformed into a TS form_ with p_olytoplc uncertainties due
functions satisfying the convex sum property [13], and th p the unmeasurable premise variables. .
transformation from a nonlinear system by using the sector In the cont.ext of _d|screte time T.S systems W'th unmea-
nonlinear transformation [15]. The present work focuses o urable premise variables, observation problem is noelarg

the last method of obtaining TS systems studied which motivates the result of the present paper. The

Using the sector nonlinear transformation, two types of Tgam idea of this paper is to obtain a way to transform

systems can be obtained: the first one presents TS system% TS system with unmeasurable premise variables into an

having measurable premise variables (which depend on ongguwalent TS system with measurable premise variables in

measured variables). The second type consists in TS systemder to apply existing results.

; ) . . Erom the above analysis, it can be seen clearly that the
having premise variables depending, partly or completel : . )

bserver design for TS systems with unmeasurable premise

on unmeasured states of the system. In the context of state’. :

variables is more complex and far from to be solved com-
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on measured variables? Of course, if such a transformatiovhere the matricese, %; and ¢ are with appropriate
exists, the use of the nonlinear sector transformationsleadimensions and the weighting functions depend only on the
to a TS system with measurable premise variables, and theneasured variableg, and ux. r’ represents the number of
the techniques developed for such systems can be applitite sub-models of the new TS model. In such a case the
This paper presents a first solution for this problem byroportional observer takes the form

using dynamic state extension inspired from the immersion

techniques used in the nonlinear framework (see [2] and ([ . r A -

references therein). Notice that, the proposed transfimma A1 = élhi (Vi U) (A2 + Bk + 21 (Ve — k) (6)
does not need the computation of the inverse transformation | Yk = €%

to get the original state because this last is containeden th

new state vector. By defining the state estimation errew= z — %, its dynam-

ics obeys to the difference equation
[l. MAIN RESULT

r/

Let us consider the nonlinear system in the form
Y it = 3 (Yo (o — £1%) & W
{ X1 = f(xk) + g(xk)uk (1) 1=

W =% The stability of such error system is largely studied and

wherex, € R", uy € R" andyy € R™Y represents, respectively, interesting results are provided based on LMI formalism
the state, the input and the output vectors of the systeand in order to design the gain& [4], [3]. These LMIs are

g are vector functions depending on the state vegtaand obtained by using different LMI conditions and relaxation
f(0) =0.C is a known matrix with appropriate dimensions.mechanisms.

Classically, the sector nonlinear transformation is agupli
to obtain an exact TS system in a compactQaeif the state A. System transformation by state extension
space as follows [15]

In this section, the approach to transform the system (1)

r
X1 = _Zlhi(fk) (A + Biu) @ into the form (4) will be given.
£

Yk =Cxk 1) Step 1:Initialize the first new variables from the state
vectorz‘((') = XS),i =1,..,n.

Step 2: For each new variable, compute its value at
k+1 (exactly the same equations as the original system
(1)) and separate all the functions depending only on
measured variableg anduy and define the remaining
nonlinear functions as new variableg,| > n. By
computing the values of these variableskat 1 it
follows

whereé is the vector of premise variables and the matrices 2)
A andB; are with appropriate dimensions and correspond to
theit" sub-model of the TS system.is the number of sub-
models and the functiorig () are the weighting functions
depending on the premise variablés and satisfying the
convex sum property

é hi(ék) =1

5 3)
0<hi(&) <LVki=1,..r

[
| .
Z‘(@)rl = _Zal,i(YkMk)ZE)

This transformation often leads to TS system where the ':S

premise variables, depend partly or completely on un- + avi (i, Uk)ZS)+¢I (Vi, U (8)

measured states. As explained in the introduction, designi i

an observer when the premise variables are unmeasurable is

more difficult. The idea is then to transform the nonlinear where z‘(j),i =1+1,..,s denote other defined new

system into the form variables. The functionsy j, a,1; and @ (yk,ux) are
Zcr1 =AYk Uk) 2+ B(Yk, U Uk @ scalar and depend only on measured variables. The
Vi = €z step 2 is repeated for gll the defined yarlablgs and the

parametes converges, if a transformation exists,No

where z, € RN is a new state vector of dimensidd > n the dimension of the new state vecir

where the components of; are contained inz. Conse- 3) Step 3: The algorithm stops when the time derivative

quently, if z, is estimated the original state is obtained of the I new state is free from nonlinear functions

directly from z. The system (4) can then be expressed in depending on the unknown states.
TS form by using the nonlinear sector transformation. On

obtains Ey using this procedure, the system described in equatipn (4

is obtained and by using the sector nonlinear transformatio
v _ . in a compact set, one obtains the TS system (5) having
A1 = i;h‘ (Vi U) (A + Fi) (5) only measurable premise variables. Then the design of the
Yk = € observer follows the classical approach.



Example: Let us consider the nonlinear discrete timeBy considering the premise variables

system derived from the Duffing map B
L _ @ { b, X, )
Xer1 = X & = ()
Xffgl =-2 (X|(<1>) +2¢Y +0.3xx? (9)  and the fact that @ < yx < 1, one obtains the TS model
YK:X|((2) with measurable premise variables in the form (5). Then,

by using the observer (6) one obtains the state estimation
It is clear that using directly the sector nonlinear transfo error dynamics (7). In this example the weighting functions
mation leads, inevitably, to a TS system with unmeasurabltepend only on the outpyt. Finally, by using the Lyapunov
premise variables. As an example, one has the followin@inction V(g) = eIPQ( where P = PT > 0, simple LMI

quasi-LPV system conditions are obtained as follows: If there exist a syminetr
positive definite matrixP and gain matrice;, i =1,...,4
0 1 such that the LMIs
X1 = 2 10
k1 032 +2-2 (Xlil)) 0 | X (10)

-P ATP—ETKT
PA — K% -P

i=1,..,4

] <0 (18)
By considering the premise variablg = O.3xl(<2) +2-

2
2 (x&l)) , @ TS model can be obtained. However, the premise . ] )
The gains of the observer are obtained #y= P K;, i =

variable depend on the unmeasured S"é%é which com- 1 4 After solving these LMIs, the following gains are
plicates the design of a TS observer. As the new state §$)zined

free from nonlinear function of the unmeasured states, the 1 1
algorithm stops. w0 w0
Now, by using the proposed approach, a TS model with L=Ls= [ 2 ] L2=La= [ 036 ]
premise variables depending only on measured variables is ’
obtained as follows: The figure 1 illustrates the chaotic behavior of the Duffing
1) Step 1: Initialize the new variablesz&l) _ X|(<1) and Map while the figure 2 shows the real states and the cor-
responding estimated states. Notice that estimatfﬂ’?gand

zf(1> corresponds to estimakél) and xff) which means that
{ 20, =2 no inverse transformation is needed.

11
22— —2(d) g ozl

which can be expressed as follows

zf(z) = xf(z). One obtains the system

0.9

(1) 2) |
Z|<(2+>1 -4 D3, 500 o 12
3h=-2(a") +24) +o3a °or ’
. . (1) 3. . 8~ 07f 1
2) Step 2:The function( z, is nonlinear and depend
on the unmeasured stazq%) = xﬁl). Then, we generate 05k |
A .
the new variablesz) = (z‘((l)) which leads to
3 3 | ]
3 1 2
21(<+)1 = (Zl(<+)1) = <z|(< )) (13)
0.4 : : : : :
The obtained system is then given in the form o o oe f(kf) o8 o0 !
1 _ 2
Z‘((;)l =4 3 ) 1)) Fig. 1. Chaotic behavior of the Duffing map
41 = —2% 3+ 2z, +0.3373 (14)
Z|(<3)1: (sz)) Remark 1: An important remark is that the initial con-
* ditions can be chosen arbitrarily in this case because they
An in quasi-LPV form as follows do not affect the convex sum property. As can be seen

in the case of unmeasurable premise variable TS systems,
0 1 0 the unmeasured states are replaced by the estimated ones.
2+03y 0 ) —2 | % (15) Therefore, the initial conditions of the observer should be
0 (Vi) 0 chosen in the compact set used to obtain the TS system.
Yk = [ 010 } Z (16) Notice that even if the initial conditions are in the compact

Zya




which leads to the rigorously equivalent system

1 T T T T
| 1 2
z:/\/\/\/\/\/\j\/\/\/\f\P Z‘E(é%lzz‘(() (3) (1) (1)(2) | (4
i =23 +27,° 4033’7 + 7,
04l 1 @ _ (@) (21)
0.2f ’ xf(l) ‘‘‘‘‘ Estimated x? 7 Zk+1 - (Zk )
‘ ‘ ‘ ‘ (4) (2)
% 0.1 0.2 0.3 0.4 05 41 =% d
s which takes the quasi-LPV form
’ ’ X|(<2) ‘‘‘‘‘ Estimated x?) 0 1 0 0 0
ir ",‘ ] B 2+ 0.3yk 0 -2 1 n 0 d
Osﬂ\f\/\/\f\/\/\/\/\/\f\/\ S 0 (w? o0 ol|*T| o |%
' : 0 0 0O O Yk
ols ‘ ‘ ‘ ‘ (22)
0 0.1 0.2 0.3 0.4 0.5
Yk = [ 010 O]Zk (23)

The matrices of the obtained model depend only on the
measured output and by considering the premise variables
E&l) =y and Eéz) = (yk)z, a TS model with measurable
set, it may happen that the convex sum property will bgremise variables is obtained in the form

Fig. 2. State estimation

lost in the transient phase and then the stability is no 4
longer satisfied. By using the proposed approach, even if Z1 =Y hi(yk) (Fzc+ %idk) (24)
the initial conditions are chosen outside of the compact Ykchlzil

set (see the example), the convex sum property is always
satisfied because the weighting functions depend only on theorder to estimate the state veciand the unknown input

measured variablg, which varies in the domaifD.4,1]. dy, the following Pl observer can be used
. . 4 R
B. Extension to Pl observer design 21 =Y hi(yi) (A2+ Bide+ L y— )
In the previous section, only state reconstruction objecti . 'fl 4 (25)

is considered. The extension to the case of systems affected | Gk+1 =0+ 3 hi(Y) A~ i)

by constant or piecewise constant unknown inputs can be per- Y = €2 =

formed with the same algorithm. Indeed, since the unknown

|nput is constant, its dynam|c is descnbecﬂaﬁl = di which By ConSIdeI’Ing the state and unknown Input estimation srror

can be considered as an additional state in the originad sték = % — 2 ands = d — dy, one obtains

vector. From this assumption, the same algorithm can be used o — ngg B &

to transform the system in the form (4) and then by using [ ] Zlh. Vi) [ II ] [ +1

the sector nonlinear transformation for the obtained syste et

the TS form can be derived which has measurable premisen the stability of the system generating the state and un-

variables. known input errors can be studied by the classical Lyapunov
Example 2: Let us consider the same chaotic system agols developed for TS systems with measurable premise

in example 1 affected, in nonlinear manner, by the unknowgariables. In figures 3 and 4, both state and unknown input

input di as follows reconstruction are illustrated. It can be seen that thestat

and the unknown input are estimated asymptotically.

] (26)

1 2
W
Xl(i)l — 9 (xﬁl)) +2X|((1)+0-3X|(<1)X1(<2)+X|<(1>dk (19) [1l. DISCUSSIONS
Vi = NEl The proposed approach is an answer to the question asked

=%

in the introduction of this paper. From the examples, it can
It can be seen that the unknown input is multiplied by thdse seen that it is possible to avoid the unmeasurable premise
unmeasured staté”. By using the proposed algorithm, the variables in the TS model by extending the state vector of

following state transformation is obtained the original system before using the nonlinear sector toans
mation. Then, the classical techniques of observer design f
zf(l) xl((l) TS systems with measurable premise variables can be used.
sz) XI((z) The proposed approach is adequate for nonlinear systems
G | = 1) 3 (20)  where applying, directly, the sector nonlinear transfdroma
A ) (Xk ) provides inevitably a TS system with unmeasurable premise

4
Z|<< xf<1)d;< variables. In the following, some points are discussed:
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Fig. 3. State reconstruction in the presence of unknowntinpu
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Fig. 4. Unknown input reconstruction

« Observer design for TS systems with unmeasurable
premise variables is done by replacing the unmeasured

inal system in a new state space where the obtained
systems present a particular structure. In addition, the
classical immersion techniques should be invertible in

order to express the states of the original system in
respect to the states of the immersed one. The pre-
sented algorithm aims only to express the system as
a LPV system with parameters depending on measured
variables and without any other particular structure for

the matrices of the LPV. Furthermore, the proposed
algorithm leads to a new state vector containing the
states of the original system, consequently, there is no
need to inversion of the transformation to recover the

original states.

As for nonlinear sector transformation technique, the

dynamic state extension, presented in this paper, is
not unigue. Then, the dynamic state extension should
be judiciously chosen in such a way to preserve the
observability property of the original system which is a

disadvantage compared to existing nonlinear immersion
techniques. Indeed, the immersion techniques transform
the system into an adequate new system with particular
structure ensuring the observability.

Notice also that the proposed algorithm may present
an infinite number of iterations. For example, let us

consider the system

1 2
X=X
K= (%) @)
YK=X|(<1)

By applying the proposed algorithm, the following new
states are obtained

- (@
- ()’
Z‘((S) _ Ezﬁz)gg (28)

states involved in the premise variables by the estimatauhich illustrates that the algorithm presents infinite nemb
version. However, a particular attention should be takeof iterations, then, there is no solution for this system.
into account on the initial values of the observer whichHowever, a solution can be obtained by using our previous
must be in the compact set where the TS model igork in [7] by using the algebraic technique.

valid in order to ensure that the convex sum property From these discussions, the proposed algorithm provides a
of the weighting functions is satisfied. Unfortunately, infirst solution to the problem of transformation of TS systems
some cases, even if the initial conditions of the observevith unmeasurable premise variable into an equivalent TS
belong to the compact set, the convex sum propertgystem with measurable premise variables of dimension
may be lost in transient phase which may cause thgreater than or equal to the dimension of the original TS
non negativity of the Lyapunov function variations andsystem. As illustrated by the examples, it can provide inter
then, the stability is no longer guaranteed. The proposesbting results. The discussed points above presents chsear
approach solves this problem since the premise variabldgections in order to obtain a systematic algorithm to ibta
depend on the measured variables which belong to equivalent TS system with measured premise variables and
compact set and do not change for different initiapreserves some properties of the original system such as

conditions (see the examples 1 and 2).

observability and detectability. In addition, it is intetiag

« As a comparison to existing immersion techniques ito study the conditions under which such a transformation
nonlinear systems, these lasts aim to immerse the origxists which avoids the infinite number of iterations.



IV. CONCLUSIONS [11]

In this paper, a new technique is proposed in order to
avoid the unmeasurable premise variables in the TS systems
obtained from a nonlinear model of the system. Classicall{£2]
the nonlinear models are transformed directly by using the
sector nonlinear transformation which often lead to T$i3]
systems with premise variables depending on unmeasured
states. It is known that dealing with the problem of observet
design in such a situation is more complex than using TS
systems with measurable premise variables. It is then alatuf1®]
to ask the question whether from the original nonlinear rhode
it is possible to obtain an equivalent nonlinear model fofie]
which the nonlinear sector transformation provides a TS
system with premise variables depending only on measurélfp
variables (input and output). This paper provides a sahutio
by using the dynamic state extension known as immersion
techniques in nonlinear framework. The difference between
the known immersion techniques and the proposed one is
that the state of the original system is contained in the new
state vector which avoids the inversion of the immersion. An
extension of the proposed approach for systems affected by
unknown inputs is provided. For future work, a deep analysis
of this approach will be performed in order to extend it to
more general systems. In addition, since the transformatio
is not unique, the study will focus on the invariance propert
in order to obtain equivalent nonlinear model that preserve
some properties of the original system such as obseryabilit
and detectability.
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