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Abstract

Data reconciliation has proven to be an e�ective technique for providing frequent, accurate and consistent ``best
estimates'' of plant operation data. However, in almost all the proposed techniques until today, the mathematical
model of the process has been considered as exact. In point of fact, this hypothesis is uncommon and frequently the
models used are uncertain. This paper proposes a new technique of data reconciliation which is able to exploit the

knowledge about the uncertainties of the model with regard to which the reconciliation is done. It leads to the solution
of a classical quadratic optimisation problem subject to constraints. The originality of the proposed technique is to use
penalty functions for solving this problem and to weight each constraint with regard to their uncertainties. # 2000

Elsevier Science Ltd. All rights reserved.
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1. Introduction

Data reconciliation is a technique to improve the
quality of measured plant operation data. These
measurements are obtained using instruments that
are inherently inaccurate or subject to failures.
Using erroneous data for technical analysis and
decision-making may yield distorted conclusions
and result in improper decisions. Accurate data
are, therefore, essential for monitoring, analysing
and controlling plant operation. One measure of
data inaccuracy is the consistency of the data with
regard to the mathematical models describing the
considered process. Among the more classical mod-
els used for describing the functioning of a process
are the balance relationships (mass, component,

species, enthalpy, chemical thermodynamic, etc.). If
all of these models are structurally perfectly
known, some of them depend on parameters
which are di�cult to assess. Therefore, it becomes
very hazardous and mathematically not correct to
reconcile operation data with regard to an uncer-
tain model without taking this last fact into
account. Assuming some knowledge about the
precision of the values of the parameters, we pro-
pose to take this information into account in the
reconciliation procedure. Some attempts in this
direction have already been recently presented
[1,2]. The proposed technique is limited, in this
paper, to the case of linear models (with regard to
variables and with regard to parameters).
Let us consider a process characterised by the

vector of the true variables X� (of dimension �)
and represented by the linear model:

M���X� � 0 �1a�
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where M���, of dimension n� v, is a matrix
depending on a parameter vector � for which the
mathematical expectation �0 and the diagonal
variance matrix W are assumed to be known. This
formulation notably allows the process to be
described with material balance equations. The
representation (1a) is, however, general and can as
well be applied to dynamic discrete systems or
discretised continuous dynamic systems [3]. The
measures X of the variables X� are corrupted by
errors that are supposed to be distributed as Gaus-
sian random variables, with zero mean and a known
variance-covariance matrix V; the measures are
linked, in an additive way, to the real values X� and
to the measurement errors " by the relation:

X � X� � " �1b�

Formulation (1b) states that all variables are
measured. If it is not the case, a classical observa-
bility analysis may extract the redundant part on
which the proposed treatment can be applied [4].
An estimation of the state X̂ of the process may be
obtained by minimising, under the constraints
(2b), the quadratic function (2a):

� � 1

2
X̂ ÿ X



 


2

Vÿ1
�2a�

M���X̂ � 0 �2b�

The choice of a quadratic function may be easily
justi®ed when the errors are normally distributed
[5]. The aim of this paper is to propose a simple
method for solving problem (2). The whole paper is
organised as follows. After this introduction,
describing the problemand enlightening the di�culty
for accounting model uncertainties, the second
section is devoted to the recalling of the solution
to the problem of data reconciliation for linear
systems with regard to a perfectly known model.
The obtained solution is analytical. The principles
of utilisation of penalty functions for solving a
quadratic optimisation problem subject to linear
constraints are presented in the third section.
Although sub-optimal, this method provides
degrees of freedom for taking into account the
model uncertainties as it will be shown in Section

5. Then, it is shown that the solution of the pre-
vious problem may be formulated in a recurrent
fashion. Based on the use of penalty functions, a
methodology to calculate the weighting factor of
each model equation in order to take into account
their uncertainty degrees is suggested in the sixth
section. The seventh section is dedicated to the
problem of sensor fault detection. It is shown how
the proposed technique enhances the pertinence of
decision-making stage. At last, the method is
applied on a small didactic example.

2. Optimal solution

Let us ®rst consider the problem (2) with
� � constant. In this case, we denote M��� as M.
Then, the problem to be solved is a quadratic opti-
misation problem subject to linear constraints. Its
optimal solution may be obtained by applying the
technique of Lagrange multipliers. The associated
Lagrangian may be written as:

L � �� lTMX̂ �3�

where l is the n-dimensional vector of Lagrange
parameters. The solution is given by the ®rst order
stationary conditions of this Lagrangian. It yields
the following n� v simultaneous equations:

@L

@X̂
� Vÿ1 X̂ ÿ X

� �
�MTl � 0 �4a�

@L

@l
�MX̂ � 0 �4b�

From this system, the following solution may be
easily deduced:

X̂ � PrX �5a�

where Pr is a so-called projection matrix de®ned by:

Pr � Iÿ VMT�MVMT�ÿ1M �5b�

Notice that the inverse of the matrix MVMT

always exists provided that all the constraints (rows
of M) are independent. Knowing that the vector of
measurement errors " is normally distributed with

36 D. Maquin et al. / ISA Transactions 39 (2000) 35±45



a zero mean and a known diagonal variance
matrix V, let us now demonstrate that the
obtained estimator is unbiased, indeed, we have:

E�X̂� � E�Pr�X� � "�� � PrE�X�� � PrE�"� �6�

as E�X�� � X� and E�"� � 0, we obtain:

E�X̂� � PrX
� � X� �7�

because, of course, the true values satisfy the con-
straints. The variance-covariance matrix of the
estimator may now be evaluated.

Var�X̂� � E �X̂ ÿ E�X̂���X̂ ÿ E�X̂��T
� �

�8�

From Eqs. (6) and (7), it yields:

X̂ ÿ E�X̂� � Pr�X� � "� ÿ X� � Pr" �9�

Then, Eq. (8) may be written as:

Var�X̂� � E Pr"�Pr"�T
ÿ � � PrE ""T

ÿ �
PT
r � PrVP

T
r

�10�
And after some simple matrix calculus, one obtains:

Var�X̂� � V̂x � PrV �11�

Summarising, Eqs. (5) and (11) characterise the
optimal solution of the problem. It may be noticed
that the vector of estimates and the corresponding
variance-covariance matrix are linked to the vector
of measurements and its variance matrix by the
same projection matrix Pr. The enhancement of the
quality of the measurements may be evaluated by
comparing the diagonal terms of V and V̂x.

3. Sub-optimal solution

A very classical solution for solving optimisa-
tion problem subject to constraints is to use pen-
alty functions. This method leads to a sub-optimal
solution which, however, can be as close as desired
to the optimal one. Let us consider again the pro-
blem (2). The previous optimisation criterion is
modi®ed as follows:

�m � 1

2
Xÿ X̂



 


2

Vÿ1
�k2 MX̂




 


2� �
�12�

where k is a scalar value which weights the con-
straints. The problem to be solved is then reduced
to a quadratic optimisation problem without con-
straints. Due to the additive form of Eq. (12), it is
clear that the optimal state X̂ is the result of a com-
promise between two objectives; the ®rst one being
the respect of the statistical distribution of the mea-
surements errors and the second corresponding to
the constraints satisfaction. Intuitively, one can see
that the constraints will only be satis®ed if the
value of k tends to in®nity. This remark will be
demonstrated further. The solution which mini-
mises the value of the criterion (12) is obtained
from the following equation:

@�m

@X̂
� Vÿ1 X̂ ÿ X

� �
� k2MTMX̂ � 0 �13�

Therefore, one obtains:

X̂ � Vÿ1 � k2MTM
ÿ �ÿ1

Vÿ1X �14�

Using the lemma of matrix inversion, this previous
expression may also be written as follows:

X̂ � PX �15a�
with:

P � Iÿ VMT kÿ2I�MVMT
ÿ �ÿ1

M �15b�
So, when the scalar value k tends to in®nity, the
obtained solution is identical as that given by (5).
For all the other values of k, the estimation given
by (15) does not satisfy the constraints. The corre-
sponding a posteriori residual, which is a decreas-
ing function of the weight k is given by:

R̂ �MX̂ �M Vÿ1 � k2MTM
ÿ �

Vÿ1X �16�

As before, the statistical properties of this esti-
mator may be calculated. Following the same
method, we already have:

E�X̂� � PX� �17�

that is to say:
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E�X̂� � Iÿ VMT kÿ2I�MVMT
ÿ �ÿ1

M
� �

X� �18�
Using the property MX� � 0, it leads to:

E�X̂� � X� �19�

Therefore, this new estimator is also unbiased and
its variance±covariance matrix is equal to:

Var�X̂� � PVPT � �I� k2VMTM�ÿ2V �20�

In this case, the reduction of the variance of the
estimate with regard to the variance of the mea-
surements depends on the chosen weight k.

4. Recurrent formulation of the sub-optimal solution

The proposed solution may be extended to the
case of multiple penalty functions. Let us denote
k2j , the weighting factor of the jth constraint in the
optimisation criterion. This latter becomes:

�m � 1

2
Xÿ X̂



 


2

Vÿ1
�
Xn
j�1

k2j mjX̂



 


2 !

�21�

It corresponds to the situation where it is desirable
to take into account, separately, the ``quality'' of
each constraint. This point will be analysed in
Section 5. The solution of this problem may be
obtained recurrently by adding, successively, each
constraint. In order to explain this procedure, let
us ®rst consider the following partition of the
constraint matrix:

M � Mnÿ1
mn

� �
�22�

where mn represents the last constraint (mn is a �-
dimensional vector). The optimisation criterion
may be written as follows:

�m � 1

2
Xÿ X̂



 


2

Vÿ1
� Mnÿ1X̂



 


2

K2
nÿ1
�k2n mnX̂




 


2� �
�23�

ThematrixK2
nÿ1 is diagonal and contains theweights

associated with the di�erent constraints ofMnÿ1.

The minimum of the criterion (23), with regard
to X̂, is obtained when:

@�m

@X̂
� Vÿ1�X̂ ÿ X� �MT

nÿ1K
2
nÿ1Mnÿ1X̂

� k2nm
T
nmnX̂ � 0

�24�

whence:

X̂ � Vÿ1 �MT
nÿ1K

2
nÿ1Mnÿ1 � k2nm

T
nmn

ÿ �ÿ1
Vÿ1X

�25�
Using the lemma of matrix inversion, this previous
expression may also be written as follows:

X̂ � Ynÿ1 ÿ Ynÿ1mT
n kÿ2n �mnYnÿ1mT

n

ÿ �ÿ1
mnYnÿ1

� �
Vÿ1X

�26a�
with:

Ynÿ1 � Vÿ1 �MT
nÿ1K

2
nÿ1Mnÿ1

ÿ �ÿ1 �26b�
Therefore, the ``global'' estimation X̂ (26a),
obtained with the n constraints, may be written
using the ``partial'' one X̂nÿ1 (those obtained by
taking into account the constraints Mnÿ1 only):

X̂ � Iÿ Ynÿ1mT
n kÿ2n �mnYnÿ1mT

n

ÿ �ÿ1
mn

� �
X̂nÿ1

�27�
This procedure may be extended to the particular
case where the constraints are progressively taken
into account one after the other. The constraint
matrix is, therefore, split into n row vectors:

M �
m1

m2

..

.

mn

0BB@
1CCA

It is, therefore, easy to show that expression (27)
may be generalised in order to write the following
recurrences:

X̂i�1 � Iÿ Yim
T
i�1 kÿ2i�1 �mi�1Yim

T
i�1

ÿ �ÿ1
mi�1

� �
X̂i

i � 0; � � � ; nÿ 1

�28a�
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Yi�1 � Iÿ Yim
T
i�1 kÿ2i�1 �mi�1Yim

T
i�1

ÿ �ÿ1
mi�1

� �
Yi

i � 0; � � � ; nÿ 2

�28b�
with:

X̂0 � X and Y0 � V �28c�

The estimation obtained at iteration nÿ 1, when
all the constraints have been taken into account,
corresponds to the researched solution, X̂ � X̂n.
Using expression (18), it is also possible to calcu-
late recurrently the variance-covariance matrix of
the estimator:

V̂i�1 � Pi�1V̂iP
T
i�1 �29a�

with:

Pi�1 � Iÿ Yim
T
i�1 kÿ2i�1 �mi�1Yim

T
i�1

ÿ �ÿ1
mi�1

�29b�
and:

V̂0 � V �29c�
The proposed technique is very interesting
because, in the matrices Pj which intervene in the
solutions [Eqs. (28a), (28b) and (29b)], the matrix
which must be inverted is a scalar. Moreover, the
progressive adding of constraints allows the con-
tribution to the ®nal solution of each constraint to
be quanti®ed.

5. Choice of the weighting factors

As previously said, the parameters intervening
in the description of the model of a system are not
always perfectly known. Assuming the knowledge
of a nominal value of each parameter as well as its
standard deviation, it is possible to enhance the
quality of the estimation results. Indeed, if the
model equations are uncertain, the complete satis-
faction of the constraint M���X̂ � 0 is not justi-
®ed. So, let us de®ne a vector of a posteriori
residuals R̂ whose components are:

r̂i � mi���X̂ i � 1; � � � ; n �30�

where the estimation X̂ has been computed
sequentially from (28) taking into account the
weights ki associated to each constraint. Thus, it is
clear that the a posteriori residuals (30) are related
to the weights.
Reciprocally, the magnitude of each residual r̂i

may be indexed on the ``quality'' of each corre-
sponding constraint. In order to de®ne more pre-
cisely this idea, let us introduce the following
reduction factor �i:

r̂i � �iri � �imi���X �31�

If the knowledge on the values of the parameters
intervening in a constraint is very precise, this
constraint may be considered as ``exact'' and has
to be satis®ed; it is natural to require a very small
a posteriori residual. It corresponds to the choice
of a reduction factor �i close to zero or even null.
Conversely, if this knowledge is less precise, the
magnitude of this residual could be more impor-
tant. However, remember that the proposed pro-
cedure tries to enhance the quality of the
measurements. So, even if the knowledge on the
parameters is very poor, one can choose to keep,
for the value of a posteriori residual, that of a
priori residual, that is to say �i � 1. Notice that
this choice is arbitrary and other solutions may be
proposed. A function which ``distributes'' the
reduction factors between these two limit values (0
and 1) might be chosen. We propose to calculate
this function following the next procedure.
First, let us de®ne the jacobian matrices, with

regard to the variables and with regard to the
parameters, of the constraint M���X� � 0:

@ M���X�� �
@ X�� �T �M��� and G�X �� � @ M���X �� �

@�T
�32�

Let us also de®ne Vrx the variance±covariance
matrix of the a priori residual R �M���X under
the hypothesis that the parameters � are perfectly
known � � �0 � constant:

Vrx �M��0�VMT��0� �33�

When considering that both the variables and the
parameters are subjected to random errors, this

D. Maquin et al. / ISA Transactions 39 (2000) 35±45 39



variance±covariance matrix becomes, assuming an
approximation at the ®rst order:

Vr �M��0�VMT��0� � G�X��WGT�X�� �34�

where W is the known diagonal variance matrix of
the parameters. As the true value X� is not known,
its value is replaced, in Eq. (34), by the measure-
ments X. For a particular residual ri � mi���X, the
corresponding standard deviations will be denoted:

�rix � mi��0�VmT
i ��0�

ÿ �1=2 �35�

and:

�ri � mi��0�VmT
i ��0� � gi�X�WgTi �X�

ÿ �1=2 �36�

The reduction factor �i associated to the ith con-
straint may now be de®ned, taking into account
these standard deviations. We propose the following
formula:

�i � 1ÿ mi��0�VmT
i ��0�

ÿ �1=2
mi��0�VmT

i ��0� � gi�X�WgTi �X�
ÿ �1=2 �37�

When the variances of the parameters tend to
in®nity (poor knowledge), the reduction factor
tends to one and when these variances tend to zero
(total knowledge), it tends to zero. In the other
cases, the proposed ratio gives an image of the
``quality'' of the sub-model mi���X� � 0.
On the basis of the previous remarks, the question

which now may be put is the following : the reduc-
tion factors of each constraint having been chosen,
which is the set of weighting factors which intervene
in the optimisation problem, that will allow the
obtaining of a posteriori residuals given by (31).
To answer this question, let us consider again

the partition (22) of the constraints matrix. Using
Eq. (27), the a posteriori residual associated to the
constraint mn can be expressed as:

mnX̂ � 1ÿmnYnÿ1mT
n kÿ2n �mnYnÿ1mT

n

ÿ �ÿ1� �
mnX̂nÿ1

�38a�

Using the lemma of matrix inversion, this residual
may also be written as:

mnX̂ � 1� k2nmnYnÿ1mT
n

ÿ �ÿ1
mnX̂nÿ1 �38b�

with:

X̂nÿ1 � Iÿ VMT
nÿ1 Kÿ2nÿ1 �Mnÿ1VMT

nÿ1
ÿ �ÿ1

Mnÿ1
� �

X

�38c�
and:

Ynÿ1 � Iÿ VMT
nÿ1 Kÿ2nÿ1 �Mnÿ1VMT

nÿ1
ÿ �ÿ1

Mnÿ1
� �

V

�38d�
This a posteriori residual may also be written as:

mnX̂ � mnX̂nÿ1
1� k2nA

�39a�

with:

A � mnYnÿ1mT
n �39b�

Substituting in (39a) the expression (38c) of X̂nÿ1,
the residual becomes:

mnX̂ � rn ÿD

1� k2nA
�40a�

where rn is the a priori residual of the constraintmn:

rn � mnX �40b�

and:

D � mnVM
T
nÿ1 Kÿ2nÿ1 �Mnÿ1VMT

nÿ1
ÿ �ÿ1

Mnÿ1X

�40c�
So, from Eq. (40a), the weighting factor k2n may be
written as:

k2n �
rn ÿmnX̂ ÿD

mnX̂A
�41a�

or, depending on the reduction factor proposed in
(31):

k2n �
�1ÿ �n�rn ÿD

�nrnA
�41b�
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Notice that the expression of the weighting factor
k2n depends on the values of all the other weighting
factors k2i i � 1; � � � ; nÿ 1 [see expressions (39b)
and (40c) of A and D]. On the basis of this remark,
a complete algorithm for determining all the
weighting factors may be proposed. It consists of
two series of iterations. In the ®rst series, each
weighting factor k2i is calculated on the basis of the
knowledge of the others k2j , j � 1; � � � ; n j 6� i.
During the second series, the ®rst series is repeated
until the convergence of the weighting factors is
obtained. In fact, the algorithm is stopped when
the relative variation of two consecutive estima-
tions of each weighting factor is less than a ®xed
threshold. So, the algorithm consists of the three
following steps.

Step 1: initialisation

K �
k0 0

. .
.

0 k0

0B@
1CA

Without a priori information, all the initial
weighting factors may be arbitrarily chosen. The
simplest is to assign a unique constant k0 to all the
weighting factors. Whether we want, at this initial
step, to privilege the proximity between the mea-
surements and their estimates or the satisfaction
of the constraints, this constant k0 will be chosen
respectively close to zero or tending towards
in®nity.

Step 2: calculus of the weighting factors

For i � 1 to n

Step 2a: partitioning of matrices

M � M�ÿi�
Mi

� �
K � K�ÿ1� 0

0 ki

� �

where M�ÿi� is equal to the matrix of constraints
M from which the ith row mi has been removed
and K�ÿi� is the matrix of the weights from which
the ith row and column have been removed.

Step 2b: calculus of the ith weighting factor

Auxiliary matrices:

ri � miX

Di � miVM
T
�ÿi� Kÿ2�ÿi� �M�ÿi�VMT

�ÿi�
� �ÿ1

M�ÿi�X

Y�ÿi� � Iÿ VMT
�ÿi� Kÿ2�ÿi� �M�ÿi�VMT

�ÿi�
� �ÿ1

M�ÿi�

� �
V

Ai � miY�ÿi�mT
i

Weighting factor:

k2i �
�1ÿ �i�ri ÿDi

�iriAi

end for

Step 3: convergence analysis

If the relative variations of all the weighting
factors between two consecutive estimations are
greater than a ®xed threshold then return to step 2
otherwise stop the algorithm.

6. Fault detection and isolation

As it has been said in the introduction, data
reconciliation techniques aim to enhance the
quality of the measurements. It is also well known
that the application of these techniques may be
used for detecting and isolating sensor faults. One
of the primary data analysis consists of checking
the coherency of the measurements with regard to
the model of the process. Usually, the vector of a
priori residuals is evaluated:

R �M���X �42�

In the particular case where � � �0 � constant and
under the hypothesis that the measurement errors
are normally distributed with zero mean and a
known variance±covariance matrix V, this residual
vector is also normally distributed with zero mean
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and a variance-covariance matrix equal to Vrx [Eq.
(33)]. In order to compare the components of R,
let us de®ne a normalised a priori residual vector
which the ith element is de®ned by:

Rn1�i� � R�i����������������
Vrx�i; i�

p �43�

Each normalised residual is now normally dis-
tributed with a unity variance. A simple statistical
two tailed test can, therefore, be employed to
detect data inconsistency. If the absolute value of
a normalised residual is greater than a ®xed
threshold, the corresponding equation is suspected
to involve faulty measurements. Classically, one
may choose this threshold to control the family-
wise Type I error rate at some pre-assigned level.
If the parameters are also considered as random

variables, the approximated variance±covariance
matrix of the a priori residual is given by (34).
Following the previous way, another normalised
residuals may be de®ned:

Rn2�i� � R�i���������������
Vr�i; i�

p �44�

Due to the approximation in the calculus of var-
iance±covariance matrix Vr, these residuals do not
have any statistical properties. However, this nor-
malisation allows them to be compared each
other. As previously, the crossing of an heur-
istically ®xed threshold by a particular normalised
residual indicates the equations suspected to
involve faulty measurements.
Another data analysis consists to examine the

magnitude of the corrective terms caused by data
reconciliation de®ned by:

E � Xÿ X̂ �45�

Let us begin by the case of a perfectly known
model. In this case, from (5), we have:

E � VMT�MVMT�ÿ1MX

It is easy to show that this vector of corrective
terms is normally distributed with zero mean and
a variance±covariance matrix Vex � Vÿ V̂x where

V̂x is de®ned by (11). As previously, a normalised
vector of corrective terms may be de®ned by
dividing each corrective term by its standard
deviation:

En1�i� � E�i�����������������
Vex�i; i�

p �46�

Each of these corrective terms being normally dis-
tributed with zero mean and unity variance, if
their absolute values are greater than a ®xed
threshold, the corresponding measurements are
suspected to be faulty.
Now, as for the a priori residuals, it is also pos-

sible to evaluate this variance±covariance matrix
taking into account the variance of the para-
meters. Let us denote �i, i � 1; � � � ; p the compo-
nents of the vector �0. As we only consider linear
equations with regard to the parameters, the
nominal matrix of constraints may always be
written as:

M��0� �M0 �
Xp
i�1
�iMi �47�

The variance±covariance matrix of the estimation
may be calculated by an approximation at the ®rst
order. So let us consider a small variation �M
induced by small variations ��i of each parameter
�i. We can write:

M��� �M��0� ��M

�M0 �
Xp
i�1

�i ���i� �Mi �48�
whence:

�M �
Xp
i�1

��iMi �49�

Now, let us explain �X̂ the variation of the esti-
mation due to a variation �M of the constraint
matrix and a variation �X of the measurements.
For the ``nominal'' values, we have, from Eq. (14):

X̂ � Vÿ1 �MTK2M
ÿ �ÿ1

Vÿ1X � Aÿ1Vÿ1X � PX

�50a�
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or:

AX̂ � Vÿ1X �50b�

In the presence of the variations �M and �X, Eq.
(50b) becomes:

Vÿ1 � �M��M�TK2�M��M�ÿ �
X̂ ��X̂
� �

� Vÿ1 X��X� �
�51�

So, limiting the expansion to the ®rst order, the var-
iation of the estimation may be approximated by:

�X̂ �ÿ Aÿ1 �MTK2M�MTK2�M�ÿ �
X̂

� Aÿ1Vÿ1�X
�52�

or, taking into account Eq. (49) and (15a):

�X̂ �
Xp
i�1

��iBiX� P�X �53a�

with:

Bi � ÿAÿ1 MT
i K

2M�MTK2Mi

ÿ �
P �53b�

Thus, Eq. (53a) expresses the sensitivity of the
estimation with regard to variations of measure-
ments and model parameters. Consequently, it
could be pointed out the most ``important'' para-
meters of the model, i.e. those having a strong
in¯uence on the estimations. On a statistical point
of view, and taking into account that the varia-
tions are centered around zero, the approximated
variance-covariance matrix of the estimation may
be obtained from Eq. (53a):

Var�X̂� � E
Xp
i�1

��iBiX

 ! Xp
i�1

��iBiX

 !T
0@ 1A
� E P�X P�X� �Tÿ �

�54a�
As the measurement and parameter errors are
independent, expression (54a) reduces to:

Var�X̂� �
Xp
i�1

BiXE ��2i
ÿ �

XTBT
i

� PE �X �X� �Tÿ �
PT

�54b�

that is to say:

Var�X̂� � V̂ �
Xp
i�1

WiiBiXX
TBT

i � PVPT �54c�

Using this expression, the variance±covariance
matrix of the corrective terms becomesVe � Vÿ V̂.
Therefore, another normalised corrective terms
may be de®ned:

En2�i� � E�i���������������
Ve�i; i�

p �55�

As for the a priori residuals, the comparison of each
normalised corrective terms with a threshold helps
in locating the eventually faulty measurements.

7. Numerical example

Let us consider the following set of linear (with
regard to variables and parameters) equations;
some of them are described with exactly known
parameters, the others being characterised by
uncertainties:

x�1 � x�2 ÿ x�3 � 0

x�3 ÿ x�4 ÿ ax�5 � 0

x�5 ÿ x�6 ÿ bx�7 � 0

x�4 ÿ cx�8 � dx�9 � 0

x�8 ÿ x�10 ÿ x�11 � 0

x�10 � x�11 ÿ x�12 � 0

The measurements of the variables as well as their
precision are given in Table 1.
Table 2 presents the nominal values of the

parameters and their accuracy.
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The ®rst treatment consists of checking the
measurements with regard to the model. Table 3
presents the values of a priori residuals and the
corresponding normalised residuals de®ned by
Eqs. (43) and (44).
The analysis of these results clearly shows the

advantages of taking into account the variance of
the parameters for decision-making according to
the fault detection goal. Indeed, if the parameters
are considered as perfectly known, a statistical test
of normal distribution of Rn1 at the con®dence
level � � 0:05 induces the conclusion that Eq. (4)
is suspected to involve faulty measurements. In
point of fact, taking into account the uncertainties
on the parameters, one ascertains that the nor-
malised a priori residual Rn2 of Eq. (4) is not the
greatest. From this analysis, one can conclude that
all the measurements seem to be coherent with the
proposed uncertain model.
After this ®rst analysis, the data reconciliation

may be envisaged. Some of the constraints are
structurally exact (®rst, ®fth and sixth equations),
so the corresponding reduction factors �i ought to
be chosen equal to zero. However, in order to
implement a unique procedure of calculus and

taking into account that the analytical expression
for calculating a weighting factor prevents the
reduction factor to be null, these reduction factors
are ®xed to an arbitrary small value. The other con-
straints are uncertain. So, the reduction factors
might be calculated according to (37). For example,
�4 is evaluated as follows:

�4 � 1ÿ �r4x
�r4

� 1ÿ
�2x4 � c2�2x8 � d2�2x9

� �1=2
�2x4 � c2�2x8 � d2�2x9 � x28�

2
c � x29�

2
d

� �1=2
Applying this technique for the other constraints,
one obtains the values of Table 4.
The proposed algorithm for determining the

weighting factors yields the values given in Table 5.
The corresponding estimations are collected in

Table 6.
In order to con®rm the results obtained by the

analysis of a priori residuals, one may compute the
di�erent corrective terms; they are presented in
Table 7.
A classical analysis, considering the values of the

di�erent parameters as exact, leads to suspect, at
the con®dence level � � 0:05, the measurements of
x9 and x10. Indeed, the corresponding normalised

Table 1

Measurements and their precision

Variable x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Measure 70 30 98 60 8 3 2 34 50 21 10 33

S.D. 3.5 1.5 4.9 3.0 0.4 0.15 0.1 1.7 1.5 1.05 0.5 1.65

Table 2

Nominal values of the parameters and their accuracy

Parameter a b c d

Value 4 2.1 5 4

S.D. 2 0.8 2 1.6

Table 3

A priori residuals and normalised residuals

Equation (1) (2) (3) (4) (5) (6)

R 2 6 0.8 90 3 ÿ2
Rn1 0.32 1.00 1.68 8.31 1.45 ÿ0.99
Rn2 0.32 0.35 0.48 0.85 1.45 ÿ0.99

Table 4

Reduction factors

Reduction factor �1 �2 �3 �4 �5 �6

Value 10ÿ5 0.65 0.71 0.90 10ÿ5 10ÿ5

Table 5

Weighting factors

Weighting factor k1 k2 k3 k4 k5 k6

Value 119.91 0.31 1.90 0.07 253.92 86.94
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terms En1 are greater than 1.96, the upper �=2 point
of the standard normal distribution. As before, a
more precise analysis based on the normalised cor-
rective terms which takes into account the variance
of the parameters shows the coherency of the mea-
surements. Therefore, it is important to note that the
proposed analysis contributes a decrease in the rate
of false alarms by exploiting all the available knowl-
edge about both measurements and models.

8. Conclusion

The bene®ts that may be obtained by using data
reconciliation techniques are demonstrated. Indeed

reconciled data can be used to better monitor
performances and yield for the plant and process
units, aid in detecting faulty instrumentation and
prioritise instrument maintenance, establish con-
sistent sets of operation data for technical analysis
and subsequent operation improvement, support
the product accounting and loss control function
by highlighting discrepancies between accounting
and operation data. The proposed technique still
enhances the bene®ts of applying data reconcilia-
tion techniques. Indeed, by taking into account all
the available knowledge about the process model,
it prevents from erroneous decisions. The involved
calculus are very simple to implement and are not
cumbersome. A current study aims to extend the
technique to the case of non linear models.
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Table 6

Estimations

Variable x1 x2 x3 x4 x5 x6

Estimation 66.48 29.35 95.83 60.29 7.91 3.05

Variable x7 x8 x9 x10 x11 x12

Estimation 2.04 33.41 46.88 22.96 10.44 33.41

Table 7

Corrective terms

Variable x1 x2 x3 x4 x5 x6
E 3.52 0.65 2.17 ÿ0.29 0.09 ÿ0.05
En1 1.48 0.45 0.94 ÿ0.13 0.33 ÿ0.32
En2 0.72 0.40 0.39 ÿ0.05 0.15 ÿ0.28
Variable x7 x8 x9 x10 x11 x12

E ÿ0.04 0.59 3.11 ÿ1.96 ÿ0.44 ÿ0.41
En1 ÿ0.47 0.75 2.35 ÿ2.51 ÿ0.94 ÿ0.52
En2 ÿ0.40 0.49 0.73 ÿ1.84 ÿ0.88 ÿ0.34
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