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Abstract 

This l:,aper presents an analysis of processes with regard to their circulating flows and mainly 
focuses on the characterization of variables depending on their redundancy level. Previous studies 
in this field were performed on processes described by linear equations (i.e. when considering a 
model of total conservation of material or energy). Here, the authors propose a novel methodol- 
ogy, permitting extension of observability analysis to processes involving linear and bilinear 
equations (i.e. partial and total balance equations). The aim here is the classification of process 
variables according to their observability level and, on a more practical side, the extraction of the 
subset of unmeasured variables deducible from those measured and from balance equations. The 
proposed technique is based on the analysis of the circuit matrix associated to the graph of the 
process under consideration. This analysis is performed depending on the number and position of 
the measurement devices. 

1. Introqrluction 

Values provided from sensors can be validated through comparison with redundant 
measurement values of  the process under consideration. These redundant measurements 
can be obtained through spatial or temporal redundancy. Static redundancy equations 
and observabil i ty concepts were first utilised for measurement  availability, in the 
mineral processing and chemical  industries as well as for electrical distribution net- 
works. The first studies (Ripps, 1962; Vaclavek,  1969) concerned data reconciliation 
using th,~ now classical technique of  production balance equilibration. In the following 
stages, t]ais data reconciliation principle has been generalized to processes described by 
algebraic equations which are either linear (Crowe and Garcia Campos,  1983) or non 
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linear (Sood et al., 1979; Crowe, 1989). At the same time, rather than just establishing 
statistically coherent balances, data reconciliation went into use for more general 
applications. It was then applied to more fundamental problems such as detection and 
estimation of gross errors (Ragot et al., 1990), diagnosis and observability of systems 
(Kretsovalis and Mah, 1988a,b; Crowe, 1989; Ragot et al., 1990), optimization of 
sensors location (Maquin et al., 1989) and study of the reliability of a measurement 
system (Turbatte et al., 1991). Researchers from the artificial intelligence field also 
proposed knowledge-based systems approaches that diagnosed sensors along with other 
system components. In this paper we will present the principles for analysing the 
observability of variables that generate equations containing only redundant variables. 
Let us recall that a measured variable may be designed as redundant if it can be 
calculated uniquely from remaining variables. As previously mentioned, this redundancy 
generally leads to a discrepancy between the data and the equations which are to be 
reconciled, hence providing means to ascertain the reliability of a given set of measure- 
ments. The methods described in this paper are currently being applied in a project 
developing a monitoring and diagnosis system for chemical and mineralurgical units. 

2. Formulat ion  of  the problem and definit ions 

Cost-wise, not every variable in a process may be measured. However, redundancy, 
due to an analytical model, permits estimation of the value of the variables from other 
measurements. It is clear that the ability to perform this estimation strongly depends on 
the structure of the process flowsheet and on the position of the measurement devices. It 
is, a priori, desirable to acknowledge if all variables of interest to the control of the 
process are observable. This is in fact, the aim of our paper and to do so we propose to 
address ourselves to the classification problems for processes described by linear and 
bilinear equations. 

Consider a process involving flow circulation (material or energy) or a network 
which may be modelized by a graph. This graph is formed by n nodes (production units) 
and m arcs (streams ensuring circulation between the production units and also with the 
environment of the process). In this study, an arc i may be characterized by two 
variables X i and Y~, for example a volumic flowrate and density or otherwise a massic 
flowrate and mineral content, for example. The process flowsheet may also be mod- 
elized by algebraic equations derived from the law of mass and energy conservation. 
Here, these are restricted to linear and bilinear equations. For one node, these have the 
following structure: 

- -  a linear constraint (for total flow balance): 
u 

E ,x,=0 (1) 
i = 1  

- -  a bilinear constraint (for partial flow balance): 
/2' 

E = o (2) 
i = 1  



J. Ragot et al. lint. J. Miner. Process. 47 (1996) 125-140 127 

where a i and /3 i are coefficients whose values depend on the directions of the flowrates 
in regard to the considered node (generally, with values 0, - 1  and + 1) and u and v 
correspond to the number of variables in each equation (u and v may be equal as is the 
case proposed in this paper). 

These equations may be applied to each node of the flowsheet. In the following, let 
us note S x and Sxy as the systems of equations respectively associated to the linear and 
bilinear balances. These two subsets form the system S, describing the model of the 
process, which may be written under a matrix form with: 

M:~X= 0 (3) 

M:~y( X" Y) = 0 (4) 

where Mx(nx,Vx) and Mxy(nr,vy) are the so-called node incidence matrices of the 
systems S~ and Sxy. The vectors X(vx,1) and Y(vy,1) are formed from variables X i and 
Y~ and the operator • is used for the product of two vectors entry by entry (the ith 
element of the vector X- Y is the product of the corresponding elements of X and Y). 

It is also possible to represent a flowsheet by the cycles of its associated graph. These 
are gathered in the so-called cycle matrix (a cycle is a closed path connecting several 
nodes). When the orientation of the circuits is not taken into account, the (i , j) th entry of 
the cycle matrix is assigned " 1 "  if the jth edge occurs in the ith circuit and " 0 "  
otherwise. Let us now define: 

C x as the cycle matrix of the graph associated with system S x, and 
Cx~ as the cycle matrix of the graph associated with the system Sxy. 

In certain applications, the matrices M x and Mxy are identical (each node is described 
simultaneously by a linear and a bilinear equation) and consequently the cycle matrices 
C x and Cxy are also identical. In other cases, the linear and bilinear parts of the system 
are not necessarily characterised by the same incidence matrix. This is the case of 
processes characterised by two different graphs, a first representing the flow conserva- 
tion, and a second for the energy conservation. 

Lastly, the process is characterised by a set of measurements with {X m} and {Ym}, 
lists containing all measured variables. 

2.1. Purpose 

The analysis of the system previously described deals with the determination of the 
observahle variables {Xob} and {Yob}, based on the knowledge of the measurements {X m} 
and {Ym)" The observable variables comprise measured variables and variables which are 
unmeasured but deducible. A secondary aim concerns the search for the unobservable 
variables i.e. those which are unmeasured and undeducible. The proposed method is 
based oil the novel observability rules presented in section 3 and illustrated in sections 4 
and 5. 

This analysis has, in particular, lead to the validation of processes, using the 
knowledge of the measured-deducible variables. This can be achieved by studying the 
analytical redundancy. This estimation problem is generally known as measurement 
reconciliation procedure and has received a considerable amount of attention during the 
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last two decades. However, it is clear that estimation may be achieved only if the 
estimation equations have been generated and the observable variables extracted. This is 
the aim of  our contribution. An important consequence is the use of  redundancy 
equations in measurement fault detection or process malfunction detection. For such a 
purpose, the residuals generated by the redundancy equations are analysed with respect 
to their magnitude, in order to detect failures. 

3. O b s e r v a b i l i t y  r u l e s  

As previously pointed out, due to technical and economic constraints, it is not 
possible to obtain measurements of  each process variable. The rules given in Table 1, 
based on the cycle matrix analysis, are well adapted to establish the conditions under 
which certain unmeasured variables may or may not be deduced. These are merely 
illustrated (section 4) without a demonstration, except for rule 2, and with examples in 
order to understand their application. 

Before going on to section 4, as an example, let us demonstrate the establishment of  
the simplest rule, rule 2. Fig. 1 presents a flowsheet with 5 nodes and 7 streams where 
streams 1 and 2 are measured. 

Demonstrat ion,  p a r t  L The  dashed line, cutting the flowsheet into two parts, S 1 and 
S 2, which defines the subset C formed by arcs 1, 2 and 3 is called a cutset of  the graph. 
A balance around the S 1 (or 52) node is the algebraic sum of flows on the arcs of  the 
cutset C such that: 

a 1 x I + a 2 X 2 "1- a 3 x 3 = 0 

where a i = _ 1 depending on directions of  the arcs. The missing value of  arc 3 can be 
calculated through the overall balance if and only if Eq. 1 contains exactly one unknown 
variable. In others words, a necessary condition for x 3 to be deducible through the 
balance equation is that all the arcs of  the cutset, except arc 3, have measured variables. 

Demonstrat ion,  p a r t  H. Considering the subsets S~ and S 2 and the arcs between these 
subsets, one end node of  an arc between S l and S 2 belongs to S l and the other to S 2. 
Indeed, the arc 3 necessarily lies on a cycle C O with at least one node belonging to S l 
and another to S 2. As a cycle is a closed path, the considered cycle C O has at least 
another arc joining a node of  S 1 to a node of  S 2. This arc necessarily has a measured 
variable. 

This analysis is extended to all possible cutsets of  the graph and consequently rule 2 

Fig. 1. A cutset of a graph. 
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Table 1 
Rules for observability study 

129 

Rule Statement Comment 

1 An unmeasured variable Xj is not observable if, and only if, 
it belongs, at least, to a cycle of Cxr where no variable 

X is measured and not more than one variable Y is measured. 

4a 

4b 

5a 

5b 

An unmeasured variable Xj is observable if it belongs 
to cycles of C~ with a minimum of one measured variable 

X (observability rule for linear system). 

In a graph where the variables Y are measured, 
an unmeasured variable Xj is observable if, and only if, 
it belongs to all cycles of Cxy, without a measurement 

in X, simultaneously with a same variable Xj. 

An unmeasured variable Y/ is unobservable if, and only if 
it belongs to a cycle of Cxy where no variable Y is measured. 

An unmeasured variable Yj is unobservable if, and only if 
it belongs to a cycle of Cxy where no variable X is 

measured and not more than one variable Y is measured. 

In a graph where the cycles of Cxr have at least one 
measured variable X, one unmeasured variable Yj 

is observable if, and only if, it solely belongs to cycles 
of Cxr with a minimum of one measured variable Y. 

In a graph where the cycles of Cxy have variables X 
which solely belong in cycles of C x with a minimum of 
one measured variable X, one unmeasured variable Yj 

is observable if, and only if, it solely belongs to cycles of 
Cxy C~ with a minimum of one measured variable Y. 

This rule is restricted to the case 
where the matrices C x and 

Cxy are identical. 

This rule permits determination 
of the observable variables X] 

by taking into account 
the system S~ only. 

This rule allows the determination 
of the observable variables X 

by taking into account the systems 
of equatiuns S x and Sxy. 

This rule may be applied 
even if the matrices 

C x and Cxy are different. 

This rule is restricted to the case 
where the matrices C x 
and C~y are identical. 

This rule is restricted to the case 
where the matrices C x 
and Cxy are identical. 

This rule may be applied 
even if the matrices C x 
and Cxy are different. 

is  e s t a b l i s h e d  s u c h  t h a t  a n  u n m e a s u r e d  v a r i a b l e  X i is  o b s e r v a b l e  i f  a n d  o n l y  i f  i t  b e l o n g s  

to  a c y c l e  o f  t h e  g r a p h  w i t h  a m i n i m u m  o f  o n e  m e a s u r e d  v a r i a b l e  X/.  

4 .  E x a m p l e s  

In  o r d e r  to  i l l u s t r a t e  t h e  m e t h o d ,  le t  u s  c o n s i d e r  a s y s t e m  e x t r a c t e d  f r o m  a r e f i n e r y  

p l a n t  s i t u a t e d  a t  G r a n d p u i t s  i n  F r a n c e .  T h i s  s y s t e m ,  p r e s e n t e d  in  t h e  F ig .  2,  is  c o m p o s e d  

o f  a p a i r  o f  t w i n n e d  h e a t  e x c h a n g e r s .  In  t h e s e  e x c h a n g e r s ,  t h e  c r u d e  oi l  i s  w a n n e d  u p  b y  
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Heat Exchanger 1 

Heat Exchanger 2 

Fig. 2. Flowsheet of a process. 

the hot refined products. The system modell ing is characterized by the relations of  mass, 
thermal and enthalpy balances. The variables involved are flowrate and temperature. 
Indeed, the temperature is considered as could be the enthalpy. The latter can be 
computed from the temperature. Extra data is not given here to lighten the notation. 

In the representation using a graph model, this system is characterized by 12 streams 
and 6 nodes (Fig. 3), corresponding respectively to 24 variables ( X  and Y) and 12 linear 
and bilinear equations. 

The balance relationships of  this process are written as: 

X 1 - - X  2 - - X 4 ~ - - - O  (1.1)  

X 4 -~" X 9 - -  X 5 - -  X l l  = 0 ( 1.2) 
X 2 + X 8 - -  X I 0  - -  X 3 = 0 ( 1.3) 
X 3 q'- X 5 - -  X 6 = 0 ( 1.4) 
x7 - x8 - x9 = 0 ( 1 .5 )  

X l o  -Jr- X l l  - -  X l 2  = 0 (1 .6)  

Xl " Y l  - -  X2" Y2 - -  X4" Y4 = 0 ( 1 . 7 )  

X4" Y4 + X9 "Y9 -- X5 "Y5 -- Xll " Yll = 0 (1 .8)  

xE'Yz + x 8  " y s - X l o ' Y l o - x 3 " y 3  = 0 ( 1 . 9 )  

X3 " Y3 + X5 " Y5 -- X6" Y6 = 0 (1 .10)  

X7 " Y7 -- X8 " Y8 -- X9 " Y9 = 0 (1 .11)  

XI0 "Yl0 + Xll "Yll -- X12 "Yl2 = 0 (1 .12)  

Notice that the relations from (1.1) to (1.6) are the mass balances. In particular, the 
mass balances (1.1) and (1.5) are written at the point of  separation of  flows, while the 

2 3 

¢- 6 

9 

4 5 

Fig. 3. Network of a process. 
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mass balances (1.4) and (1.6) involve the mixing of the flows at the outputs of the 
exchangers. The relations (1.7), (1.10), (1.11) and (1.12) are the thermal balances. 
Finally, the relations (1.9) and (1.8) are the enthalpy balances around the heat exchang- 
ers 1 and 2 respectively. The sensors measuring the variables X and Y are denoted by 

Table 2 
Matrix C of all the cycles 

2 1 3 4 7 10 5 6 8 9 11 12 

! 1 1 1 
1 l 1 1 
1 1 1 1 

1 1 1 1 
1 1 1 1 
1 1 1 1 

1 
1 
1 

1 1 
1 1 1 

1 1 
1 1 

1 1 ! 
1 

i 1 
I 1 

1 
1 
1 1 

1 
1 

1 1 
1 
1 1 

I 

1 
1 

1 

1 
1 1 

1 

i 
1 
1 

1 1 
1 
1 1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
!1 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
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filled rectangles and circles respectively. In this example, as the matrices M x and Mxy 

are identical, the cycle matrices C x and Cxy are also identical and defined by C. This 
cycle matrix is presented in Table 2. Its first line denotes the variables and its last 
column the cycle number. This matrix consists of two parts. The first contains the 
fundamental cycles (for example, the first is composed of streams 2, 3, 4 and 5) and the 
second all the cycles obtained by aggregation (in deleting common arcs) of the 
fundamental cycles (aggregation of two cycles, three cycles,...). Hence, as an example, 
the 7th line results from the aggregation of cycles 1 and 2. The reader is invited to verify 
that the matrix of fundamental cycles may be obtained by a simple transformation of the 
incidence matrix of the flowsheet (Mah et al., 1976). 

Different situations are now presented and analysed in order to apply and illustrate 
the observability rules of Table 1. In the following examples, the list of measured 
variables and the list of unmeasured variables are respectively denoted as L m and L~. 

Remark: If the flowsheet is modified, a new cycle matrix can easily be obtained from 
the previous cycle matrix. The fusion of two nodes corresponds to the elimination of 
their adjacent streams. For the cycle matrix, this would imply the suppression of the 
columns corresponding to these streams. 

4.1. Using rule 1 

In this example (Fig. 4), the measured variables X and Y are gathered in the lists 
below: 

Xm = [X2, XS' X7] Ym = [Yl, Y2' Y3, Ys, Yt, Y7' Ylo] 

Variables X i, for which analysis of observability is desired, are defined using the list: 

X~ = [Xl ,  x3, x4,  x6,  x8, x9,  xlo , Xll , g12 ] 

In order to apply rule 1, let us first determine the cycles without measurement X. 
According to Table 1, these are cycles 14, 15, 29, 42, 21, 32 and 33, and are 
respectively made up of streams (1, 3, 4, 6, 10, 11), (3, 6, 10, 12), (1, 3, 4, 6, 8, 9), (3, 6, 
8, 9, II,  12), (1, 4, 11, 12), (8, 9, 10, 11) and (1, 4, 8, 9, 10, 12). Among these cycles, 
those containing no more than one Y measurement are (1, 4, 11, 12), (8, 9, 10, 11). 
Thus, one may conclude from rule 1 that the unmeasured variables Xm belonging to 
these cycles are unobservable and: 

Xo~ = [Xl ,  x 4, x 8, x 9, x lo ,  Xll ,  x12] 

v 
5 

Fig. 4. Flowsheet of  a process and associated measurement positions. 
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4.2. Usir~g rule 2 

Two measurements x 4 and x 8 are added (Fig. 5) to the previous list X m and the 
measured variables X and Y are stored in the following lists: 

X~=[x2 ,  x4, x5, x7, x8] Ym=[yl, y2,y3, yS, y6,Y7, Ylo] 

Here we aim to study the observability of the variables: 

X~? ---- [ x , ,  x3, x6, x9, xlo,  X,l, x ,2]  

Consequently, it is necessary to determine the cycles with a minimum of one measured 
variable X. It is useful to note that the variables X, which do not appear in cycles 
without a measured variable X, are in fact variables which only appear in cycles with a 
minimura of one measured variable X. Consequently, for this example, it is more 
convenient (in order to apply rule 2) to detect cycles without X measurement. Thus only 
cycle 15 formed of streams (3, 6, 10, 12) is concerned. According to rule 2, the 
following observable variables in X~ may be selected and: 

Xo~ = [ x i ,  x 9, Xll]  

4.3. Using rule 3 

As for rule 2, the identical measured variables are used such that: 

Xm = IX2, X4, XS, X7, X8] Ym = [Yl '  Y2' Y3' Ys' Y6, Y7' Yl0] 

The unmeasured variables X and Y are stored in the following lists: 

Xfi~ = [ X l , X 3 , X 6 ,  X9, Xlo, X l l , X l 2 ]  Ym= [Y4, Ys,Y9, YlI, Y12] 

Our aim is to determine the observable variables X using rule 3. 
First, we look for variables belonging to cycles within which a minimum of two 

variable:; Y are measured. When analysing the cycles of Table 2, it is more convenient 
to list the cycles with no more than one measurement in Y. These are cycles 16, 21, 32 
and 35 respectively formed of streams (2, 4, 8, 9), (1, 4, 11, 12), (10, 8, 9, 11) and (7, 9, 
11, 12). These cycles do not contain variables 3, 5 and 6 and consequently, this result 
proves that the variables (3, 5, 6) only belong to cycles with a minimum of two Y 
measurements. 

From a practical point of view, these cycles are obtained from Table 2 in which the 

2 3 

I • .'In] -, 

4 • - V  " I 5 

Fig. 5. Flowsheet of a process and its measurement positions. 
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Table 3 
Cycles of the reduced graph 

3 5 6 

1 1 1 
! 1 2 

i 1 7 

rows corresponding to streams (1, 2, 4, 7, 8, 9, 10, 11, 12) are suppressed. The resulting 
submatrix, given in Table 3 only contains cycles 1, 2 and 7 of Table 2 (one may note 
that this matrix corresponds to the initial flowsheet reduced to node IV): 

In the reduced graph of Table 3, applying rule 3 requires the determination of cycles 
without measurement X (i.e. containing only unmeasured variables). According to the 
entries of list X m, merely cycle 2 is made up of streams 3 and 6. Thus from rule 3, one 
may deduce the list of observable X variables such that: 

Xob = [ x3,  x6] 

4.4. Using rule 4 

In this example (Fig. 6), the measured variables X and Y are stored in the lists 
below: 

Xm = [XI' X4' Xll' XI21 Ym = [Y,, Y2, Ys, Y6, Y71 

and we aim to distinguish the unobservable Y variables. The unmeasured variables, Y, 

are stored in list: Ym = [Y3, Y4, Ys, Y9, Yl0, Y11, Y~2] 
According to rule 4a, the unmeasured variables, Y, which belong to cycles without 

measurement Y are unobservable. Merely cycle (32) is found without Y measurement 
(made up of streams (8, 9, 10, 11)) and therefore, one may claim that Ys, Y9, Ylo and 
Yll are unobservable. 

Applying rule 4b requires the determination of cycles without measurement X. The 
analysis of Table 2 shows that cycles 12, 23 and 26 respectively made up of streams (3, 
6, 7, 8), (5, 6, 7, 9) and (3, 5, 8, 9) have no measurements in X. Among these cycles, 
merely cycle 26 contains one or less than one measurement Y. This cycle is made up of 
streams (3, 5, 8, 9). Therefore, with variable 5 being measured, one may conclude from 

2 3 

• F ~  w 
4 5 

Fig. 6. Flowshect of a process and its measurement positions. 
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rule 4b that the unmeasured variables Y3, Ys, Y9 are unobservable. Following rules 4a 
and 4b, the unmeasured unobservable variables are: 

Yo~ = [ Y3' YS' Y9' YlO' Yn ] 

4.5. Using rule 5 

As in previous examples: 

X m = [ X l , X 4 , X n , X l 2 ]  Y m = [ Y l , Y 2 ,  yS, Y6, Y7] 

The aim is to analyse the observability of the variables Y: 

Y~ = [Y3, Y4, Ys, Y9, Ylo, YlI, YI2] 

The firslL step deals with the determination of a network comprised of cycles with a 
minimum of one measured variable X. Firstly, it would be more convenient to 
determir~e the cycles without an X measurement. These cycles (lines 12, 23 and 26 of 
Table 2) are respectively defined by streams (3, 6, 7, 8), (5, 6, 7, 9) and (3, 5, 8, 9). It is 
now possible to obtain a graph comprised of cycles with a minimum of one measured 
variable X. For this purpose, one deletes the streams belonging to cycles with no 
measurement X (3, 5, 6, 7, 8, 9). The nodes connecting to these streams are then 
aggregated. When considering the cycle matrix, the suppression of the above streams 
yields a reduced matrix (Table 4). This reduced matrix is obtained from Table 2 by 
deleting columns 3, 5, 6, 7, 8 and 9. In this matrix, measured Y variables are presented 
in bold characters. 

The observability of the unmeasured variables Y4, Ylo, Yll and Y~2 may now be 
studied. Analysing the cycles of Table 4, we seek cycles with a minimum of one 

Table 4 
Cycles resulting from streams deletion 

2 1 4 l0 11 12 

1 1 
1 1 

1 1 
1 1 
1 1 

1 1 
1 

1 1 
1 

1 
2 
4 

1 5 
1 6 

1 lO 
1 11 

1 14 
1 15 

1 19 
1 20 

1 1 21 
1 1 28 

1 33 
1 1 34 
1 1 42 
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measured variable Y. As a result, the unmeasured variable Y4 is the sole observable 
variable. 

Remark: Combining Eqs. (I.  1), 

X 1 - - X 2 - - X 4 = 0  

and (1.7), 

xl  'Yl - x 2  "Y2 --X4 "Y4 = 0 

also yields an identical result. Replacing the unknown variable x 2 by the measurements 
x I and x 4, Eq. (1.7) becomes the deduction equation of the variable Ya- 

The proposed examples thus provide a means of using observability rules in order to 
perform the classification of process variables. It is important to note the simplicity of 
the numerical computation. Indeed, an analysis of the cycle matrix according to the 
positions of the measurement devices only involves a search of occurrences of variables. 
The automation of the treatment is then rather straightforward. 

5. Observability algorithm 

The previous examples have enabled us to apply the different observability rules. 
However for physical flowsheets, these rules have to be applied in an iterative way. 
Indeed, in applying one rule, we can point out a certain number of observable variables, 
observable, as these may be deduced from other measured variables. These deduced 
variables play the same role as the measurements and therefore for the total flowsheet 
the list of measured variables has to be updated. Consequently, the observability analysis 
must be repeated. 

As shown in previous examples, the observability analysis includes two main steps. 
The first is dedicated to the construction of the cycle matrix of the graph and requires 
the establishment of the independent cycles, a familiar task. Based on these basic cycles, 
all the cycles may be obtained by linear combinations. The second step concerns the 
observability analysis. It is based on the examination of cycles in conjunction with the 
available measurement and according to the rules summarized in Table 1. 

The algorithm comprises two steps. The first points out the unobservable variables 
(rules 1 and 4). The second permits the iterative determination of observable variables. 
Let us introduce the definitions of the two sets: 

Xcm contains unmeasured variables Xj solely belonging to cycles of C x in which a 
minimum of one variable X is measured; 
Xcs contains the remaining unmeasured variables X. 
Rule 2 (Table 1) shows that the variables X of Xcm may be classed as observable. 

When analysing the observability of the variables X of Xcs, one uses the measured 
variables Y and also the deducible variables. On another hand, analysing the observabil- 
ity of variables Y not only leads us to consider the bilinear system but also depends on 
the observability of variables X of Xcs. For this, one needs to consider the measurements 
as well as the observable variables. If  the cycle matrices C x and Cxy are different, the 
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o b s e r v a b l e  va r i ab les  X are u p d a t e d  ( ru le  2). C o n s e q u e n t l y ,  the  obse rvab i l i t y  s tudy  o f  

s tep 2 obeys  the  f o l l o w i n g  s t ructure :  

1. the  va r i ab le s  X of  type  Xcm are c lass i f i ed  as o b s e r v a b l e  ( rule  2, m a t r i x  Cx); 
2. a m a ~ d m u m  n u m b e r  o f  va r i ab l e s  Y are c lass i f i ed  o b s e r v a b l e  ( ru le  5, ma t r ix  Cxy); 

3. a m a : d m u m  n u m b e r  o f  va r i ab l e s  X o f  type  Xcs are c lass i f i ed  as o b s e r v a b l e  ( rule  3, 

ma t r ix  Cxy). 
T h e  a b o v e  p rocedu re  is r epea t ed  unt i l  no  fu r the r  u n m e a s u r e d  X and  Y va r i ab le s  can  

be  c lass i f i ed  as obse rvab le .  D u r i n g  the  execu t ion  o f  the  p r o c e d u r e ,  it is u n d e r s t o o d  that  

w h e n e v e r  an u n m e a s u r e d  va r i ab l e  is c lass i f i ed  as obse rvab le ,  it is t he rea f t e r  t r ea ted  as 

m e a s u r e d .  

6. E x a m p l e  

Le t  us  cons ide r  the  p r oce s s  o f  Fig.  3 de sc r ibed  by  the  f o l l o w i n g  equa t ions :  

x I - x 2 - x 4 = 0 

x 2 -- X 3 = 0 

X 4 -- X 5 = 0 

X 3 q" X 5 -- X 6 = 0 

X 7 -- X 8 -- X 9 = 0 

X 8 -- Xlo = 0 

X 9 -- Xl l  = 0 

XIO + X l l  --X12 = 0 

xl  Yl - x2 Y2 - x4 Y4 = 0 

x4 Y4 - x5 Y5 + x9 Y9 = 0 

x2 Y2 - x3 Y3 + x8 Ys - Xlo Ylo = 0 

X3 Y3 + X5 Y5 -- X6 Y6 = 0 

X7 Y7 -- X8 Y8 -- x9 Y9 = 0 

Xla Yl0 + X l l  Yll --X12 Yl2 = 0  

A s  p rev ious ly  exp la ined ,  these  equa t i ons  m a y  be  used  to de sc r ibe  mass  or  ene rgy  

b a l a n c e  equa t ions  o f  the  p r oce s s  and  m a n y  o f  the  fea tures  of  this  s i m p l e  n e t w o r k  m a y  be  

Table 5 
Cycle matrix C x 

2 1 3 4 7 8 9 10 5 6 11 12 

1 1 1 1 1 
1 1 1 1 2 

1 1 1 1 3 
1 1 1 1 4 

1 1 1 1 5 
1 1 1 1 6 
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analogous to other physical systems dealing with liquids, gases or solids, flowing 
through pipes, tanks, pumps, etc. One notes that the incidence matrices M x and Mxy are 
now different. The cycl e matrix C x is presented in Table 5. The cycle matrix Cxy has 
been given in Table 2. 

The measured variables are defined in lists: 

Xm "~" [Xl, x2, x7 ] Ym = [Yl, Y2, Y3, Y7, YS' Y9] 

and the unmeasured variables in: 

X~ : [x3,  x4, x5, x6, Xs, x9, xlo , Xl,, x,2 ] YN : [Y4, Ys, Y6, Y,o, Y,,, Y,E] 

6.1. First step: determination of the unobservable variables Y 

As cycle 38 is formed of streams 5, 6, 11 and 13, which are unmeasured in Y, rule 4a 
yields: 

Yo~ = [Ys, Y6' YlI' YI2] 

6.2. Second step: determination of the observable variables Xob and Yob 

6.2.1. First iteration 
According to rule 2, applied to C x, the observable variables X are: 

Xob = [x3 ,  x , ,  x , ,  x6, x12 ] 

Considering the observable variables, the lists of variables X are updated to: 

Xm= [Xl,X2,X3,X4, X5, X6,X7, Xl2 ] X ~ =  [Xs,X9, Xlo, Xll] 

According to rule 5, applied to Cxy, one searches for cycles with a minimum of one 
measured variable X. As previously suggested, it is more convenient to delete rows 8, 9, 
10 and 11 of Table 2 of Cxy. From the remaining cycles, one looks for the variables Y 
belonging to cycles with a minimum of one measured Y variable. As a result, merely Y4 
is observable. Consequently: 

Yob = [24] 

As Y4 is observable, one may modify the definition of the measured and unmeasured Y 
variables such that: 

Ym=[Yl,Y2,Y3,Y4,Y7,  Ys,Y9] Y~=[Ys,  Y6,Ylo, YII,Ylz] 

According to rule 3, one finds that the observable variables are: 

.gob = [ XS, X9 ] 

which allows an update of the lists of variables X yielding: 

X m = [Xl, x2, x3 ,x4 ,  x 5 , x 6 , x 7 ,  Xs, x9, x12 ] X ~ =  [xlo,  Xll ] 
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Summarizing the results of iteration 1 leads to the following lists of measured and 
unmeasured variables: 

X m = [ x , ,  x2,  x3, g4,  x5, X6, x7, x8, x9, x,2 ] X~ ~- [x lo  , Xl, ] 

Ym=[Y,,Y2,Y3, Y4, Y7,Ys, Y9] Ym=[Ys, Yr,YIo,Y11,Y12] 

6.2.2. Second iteration 
According to rule 2, the observable X variables are: Xob = [Xl0 , Xll ] and the X lists 

are updated: 

Xrr ' = [X1, X2, X3, X4, X5, X6, g7,  Xs, X9, Xl0 , Xll , X12 ] X~ = [ ] 

According to rule 5, the observable variables Y are: Yob = [YI0]" THUS, the new lists 
of measured and unmeasured Y variables are updated: 

Ym = [Yl, Y2, Y3, Y4, YT, Ys, Y9, Y,o] Ym = [Ys, Yr, Y,,, Y,21 

One notices that the remaining unmeasured variables Y are unobservable and have been 
determined during the first step of the algorithm. Moreover, the procedure stops where 
no X variables are left to classify. As a final classification, one may write: 

Xo] , = [Xl, x2, x3, x4, Xs, x6, x7, x8, x9, xlo, XII, X12] Xo~ ~-- [ ] 

Yob = [Yl, Y2, Y3, Y4, YT, Ys, Y9, r io]  Yo~ = [Y5, Yr, Yl,, Yl2] 

As stated before, statistical treatment (such as balance equilibration through data 
reconciliation) may be achieved on these observable variables. The reader should also be 
aware that the Yo~ list, referring to the unobservable Y variables, could involve a 
reflexion on supplementary sensor definition. 

7. Concllusion 

The observability analysis of variables of a physical process is proposed. A new 
classification method based on the cycle matrix of a process has been established and 
tested on several networks. The aim resulting from such classification is the extraction 
of observable and unobservable variables. This method is particularly devoted to the 
analysis of systems modelized by linear and bilinear balance equations and applications 
may be encountered for processes involving material and energy transportation such as 
mineral and chemical plants. 

The application of the method on a concrete process is composed of two steps. The 
first concerns the modelisation of the process by its graph from which the cycle matrix 
is generated. The second deals with the structure analysis of the cycle matrix according 
to the number and the positions of available sensors. The main result of this second step 
is the classification of variables in respect to their observability level. It is important to 
note that a modification of the measurement system (number and position of new 
sensors, moving existing sensors, deleting sensors) is easily taken into account. Indeed, 
the cycl,~ matrix is independent of measurements and thus one is merely required to 
analyse the cycle matrix in accordance with new measurement positions. 
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For  analysis purpose,  the proposed  me thod  appears to be at tract ive for character is ing 

the variables and therefore to give the users a list o f  the observable  and unobservable  

variables.  As  a consequence  o f  this analysis,  one may  further invest igate  the design o f  

the measu remen t  system, i.e. the defini t ion o f  the number  and the posi t ion o f  the sensors 

in order  to satisfy specif icat ions  on the observabi l i ty  o f  certain key var iables  including 

constraints on these sensors  (cost, precis ion,  reliability). 
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