Finite memory observer for switching systems: application to diagnosis

Abdelfettah Hocine, Didier Maquin and José Ragot

Presented by Didier Theilliol

Institut National Polytechnique de Lorraine
Centre de Recherche en Automatique de Nancy UMR 7039 CNRS - Université Henri Poincaré, Nancy 1 - INPL

Introduction (1)

Goals

Introduction (1)

Goals

- To recognize among a set of models, that which describes best the behavior of a system at a given instant
- To use this technic for fault detection purpose

Introduction (1)

Goals

- To recognize among a set of models, that which describes best the behavior of a system at a given instant
- To use this technic for fault detection purpose

Means

Introduction (1)

Goals

- To recognize among a set of models, that which describes best the behavior of a system at a given instant
- To use this technic for fault detection purpose

Means

- To use a bank of observers, each one of them being tuned on a model and to generate various residuals
- To jointly analyze the residuals with the a priori activation probabilities of the models

Introduction (2)

Guideline

Introduction (2)

Guideline

- Adaptation of the GBP approach (Generalized Pseudo-Bayesian approach) developed by Bar-Shalom (1989) (recent works : Zhang, Jiang, 2001)

Introduction (2)

Guideline and contribution

- Adaptation of the GBP approach (Generalized Pseudo-Bayesian approach) developed by Bar-Shalom (1989) (recent works : Zhang, Jiang, 2001)
- Substitution, in the estimator bank, of the Kalman filters by finite memory observers

Introduction (2)

Guideline and contribution

- Adaptation of the GBP approach (Generalized Pseudo-Bayesian approach) developed by Bar-Shalom (1989) (recent works : Zhang, Jiang, 2001)
- Substitution, in the estimator bank, of the Kalman filters by finite memory observers
- Taking into account of model with unknown inputs

Finite memory observer (1)

Discrete form of a linear dynamical model

$$
\left\{\begin{array}{l}
x_{k+1}=A x_{k}+B u_{k}+G w_{k} \\
y_{k}=C x_{k}+v_{k}
\end{array}\right.
$$

with centered noises v_{k} and w_{k}

Finite memory observer (1)

Discrete form of a linear dynamical model
$\left\{\begin{array}{l}x_{k+1}=A x_{k}+B u_{k}+G w_{k} \\ y_{k}=C x_{k}+v_{k}\end{array}\right.$
with centered noises v_{k} and w_{k}

Integration on a finite horizon $[k-m, k]$

$$
Y_{k}=P_{m} x_{k-m}+B_{m} U_{k}+G_{m} W_{k}+V_{k}
$$

Finite memory observer (1)

Discrete form of a linear dynamical model
$\left\{\begin{array}{l}x_{k+1}=A x_{k}+B u_{k}+G w_{k} \\ y_{k}=C x_{k}+v_{k}\end{array}\right.$ with centered noises v_{k} and w_{k}

Integration on a finite horizon $[k-m, k]$

Finite memory observer (1)

Discrete form of a linear dynamical model
$\left\{\begin{array}{l}x_{k+1}=A x_{k}+B u_{k}+G w_{k} \\ y_{k}=C x_{k}+v_{k}\end{array}\right.$ with centered noises v_{k} and w_{k}

Integration on a finite horizon $[k-m, k]$
with

$$
\begin{gathered}
Y_{k}=P_{m} x_{k-m}+B_{m} U_{k}+G_{m} W_{k}+V_{k} \\
P_{m}=\left(\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{m}
\end{array}\right) \quad Z_{k}=\left(\begin{array}{c}
z_{k-m} \\
z_{k-m+1} \\
\vdots \\
z_{k}
\end{array}\right)
\end{gathered}
$$

Finite memory observer (2)

Integration on a finite horizon $[k-m, k]$

$$
Y_{k}=P_{m} x_{k-m}+B_{m} U_{k}+G_{m} W_{k}+V_{k}
$$

Integration on a finite horizon $[k-m, k]$
with

$$
Y_{k}=P_{m} x_{k-m}+B_{m} U_{k}+G_{m} W_{k}+V_{k}
$$

Finite memory observer (3)

Integration on a finite horizon $[k-m, k]$

$$
Y_{k}=P_{m} x_{k-m}+B_{m} U_{k}+G_{m} W_{k}+V_{k}
$$

Integration on a finite horizon $[k-m, k]$

$$
Y_{k}=P_{m} x_{k-m}+B_{m} U_{k}+G_{m} W_{k}+V_{k}
$$

State estimation

$$
\hat{x}_{k-m}=\arg \min _{x_{k-m}}\left\|P_{m} x_{k-m}+B_{m} U_{k}-Y_{k}\right\|^{2}
$$

Finite memory observer (3)

Integration on a finite horizon $[k-m, k]$

$$
Y_{k}=P_{m} x_{k-m}+B_{m} U_{k}+G_{m} W_{k}+V_{k}
$$

State estimation estimation at instant $k-m$

$$
\hat{x}_{k-m}=\arg \min _{x_{k-m}}\left\|P_{m} x_{k-m}+B_{m} U_{k}-Y_{k}\right\|^{2}
$$

Integration on a finite horizon $[k-m, k$]

$$
Y_{k}=P_{m} x_{k-m}+B_{m} U_{k}+G_{m} W_{k}+V_{k}
$$

State estimation

$$
\hat{x}_{k-m}=\arg \min _{x_{k-m}}\left\|P_{m} x_{k-m}+B_{m} U_{k}-Y_{k}\right\|^{2}
$$

Solution

$$
\hat{x}_{k-m}=\left(P_{m}^{T} P_{m}\right)^{-1} P_{m}^{T}\left(Y_{k}-B_{m} U k\right)
$$

Integration on a finite horizon $[k-m, k]$

$$
Y_{k}=P_{m} x_{k-m}+B_{m} U_{k}+G_{m} W_{k}+V_{k}
$$

State estimation

$$
\hat{x}_{k-m}=\arg \min _{x_{k-m}}\left\|P_{m} x_{k-m}+B_{m} U_{k}-Y_{k}\right\|^{2}
$$

Solution

$$
\begin{gathered}
\hat{x}_{k-m}=\left(P_{m}^{T} P_{m}\right)^{-1} P_{m}^{T}\left(Y_{k}-B_{m} U k\right) \\
\hat{x}_{k}=A^{m} \hat{x}_{k-m}+T_{m} U_{k} \\
T_{m}=\left(\begin{array}{lllll}
\left(A^{m-1} B\right)^{T} & \left(A^{m-2} B\right)^{T} & \ldots & B^{T} & 0
\end{array}\right)^{T}
\end{gathered}
$$

Integration on a finite horizon $[k-m, k]$

$$
Y_{k}=P_{m} x_{k-m}+B_{m} U_{k}+G_{m} W_{k}+V_{k}
$$

State estimation

$$
\hat{x}_{k-m}=\arg \min _{x_{k-m}}\left\|P_{m} x_{k-m}+B_{m} U_{k}-Y_{k}\right\|^{2}
$$

Solution

$$
\begin{gathered}
\hat{x}_{k-m}=\left(P_{m}^{T} P_{m}\right)^{-1} P_{m}^{T}\left(Y_{k}-B_{m} U k\right) \\
\hat{x}_{k}=R_{m} Y_{k}+S_{m} U_{k} \\
R_{m}=A^{m}\left(P_{m}^{T} P_{m}\right)^{-1} P_{m}^{T}, \quad S_{m}=T_{m}-A^{m}\left(P_{m}^{T} P_{m}\right)^{-1} P_{m}^{T} B_{m}
\end{gathered}
$$

Extension : unknown inputs

Model

$$
\left\{\begin{array}{l}
x_{k+1}=A x_{k}+B u_{k}+E d_{k}+G w_{k} \\
y_{k}=C x_{k}+v_{k}
\end{array} \quad \text { with } d_{k+1}=d_{k}+\delta_{k}\right.
$$

Extension : unknown inputs

Model

$$
\left\{\begin{array}{l}
x_{k+1}=A x_{k}+B u_{k}+E d_{k}+G w_{k} \\
y_{k}=C x_{k}+v_{k}
\end{array}\right.
$$

$$
\text { with } d_{k+1}=d_{k}+\delta_{k}
$$

Augmented model

$$
\left\{\begin{array}{l}
x_{k+1}^{\prime}=A_{a} x_{k}^{\prime}+B_{a} u_{k}+G_{a} w_{k} \\
y_{k}=C_{a} x_{k}^{\prime}+v_{k}
\end{array} \quad x_{k}^{\prime}=\binom{x_{k}}{d_{k}}, w_{k}^{\prime}=\binom{w_{k}}{\delta_{k}}\right.
$$

Extension : unknown inputs

Model

$$
\left\{\begin{array}{l}
x_{k+1}=A x_{k}+B u_{k}+E d_{k}+G w_{k} \\
y_{k}=C x_{k}+v_{k}
\end{array}\right.
$$

$$
\text { with } d_{k+1}=d_{k}+\delta_{k}
$$

Augmented model
$\left\{\begin{array}{l}x_{k+1}^{\prime}=A_{a} x_{k}^{\prime}+B_{a} u_{k}+G_{a} w_{k} \\ y_{k}=C_{a} x_{k}^{\prime}+v_{k}\end{array} \quad x_{k}^{\prime}=\binom{x_{k}}{d_{k}}, w_{k}^{\prime}=\binom{w_{k}}{\delta_{k}}\right.$
with

$$
A_{a}=\left(\begin{array}{cc}
A & E \\
0 & I
\end{array}\right), G_{a}=\left(\begin{array}{cc}
G & 0 \\
0 & I
\end{array}\right), B_{a}=\left(\begin{array}{cc}
B & 0 \\
0 & I
\end{array}\right), C_{a}=\left(\begin{array}{ll}
C & 0
\end{array}\right)
$$

Switching systems

Set of r models

$$
M_{j}:\left\{\begin{array}{l}
x_{k+1}=A_{j} x_{k}+B_{j} u_{k}+G_{j} w_{k} \\
y_{k}=C_{j} x_{k}+v_{k}
\end{array} \quad j=1, \ldots, r\right.
$$

Switching systems

Set of r models

$$
M_{j}:\left\{\begin{array}{l}
x_{k+1}=A_{j} x_{k}+B_{j} u_{k}+G_{j} w_{k} \\
y_{k}=C_{j} x_{k}+v_{k}
\end{array} \quad j=1, \ldots, r\right.
$$

Model transitions are governed by a Markovian process

$$
\Pi=\left(\begin{array}{ccc}
p_{11} & \ldots & p_{1 r} \\
\vdots & \ddots & \vdots \\
p_{r 1} & \ldots & p_{r r}
\end{array}\right)
$$

$p_{i j}$: Transition conditional probability from model M_{i} to model M_{j} (a priori information)

"Global" state estimation

"Local" estimation

$$
\left(Y_{k}, U_{k}\right) \text { and } M_{j} \Rightarrow \hat{x}_{k}^{j} \quad j=1, \ldots, r
$$

"Global" state estimation

"Local" estimation

$$
\left(Y_{k}, U_{k}\right) \text { and } M_{j} \Rightarrow \hat{x}_{k}^{j} \quad j=1, \ldots, r
$$

"Global" estimation

$$
\hat{x}_{k}=\sum_{j=1}^{r} \hat{x}_{k}^{j} \mu_{k}^{j}
$$

μ_{k}^{j} : a posteriori probability that the system behaves as the $j^{\text {th }}$ model

Estimation of the probabilities μ_{k}^{j} (1)

Definition

$$
\mu_{k}^{j}=P\left\{M_{j}(k) \mid Y_{k}\right\}
$$

Estimation of the probabilities μ_{k}^{j} (1)

Definition

$$
\mu_{k}^{j}=P\left\{M_{j}(k) \mid Y_{k}\right\}
$$

Measurement vector partition

$$
Y_{k}=\binom{\tilde{Y}_{k-1}}{y_{k}}
$$

Estimation of the probabilities μ_{k}^{j} (1)

Definition

$$
\mu_{k}^{j}=P\left\{M_{j}(k) \mid Y_{k}\right\}
$$

Measurement vector partition

$$
Y_{k}=\binom{\tilde{Y}_{k-1}}{y_{k}} \Rightarrow \mu_{k}^{j}=P\left\{M_{j}(k) \mid \tilde{Y}_{k-1}, y_{k}\right\}
$$

Estimation of the probabilities μ_{k}^{j} (1)

Definition

$$
\mu_{k}^{j}=P\left\{M_{j}(k) \mid Y_{k}\right\}
$$

Measurement vector partition

$$
Y_{k}=\binom{\tilde{Y}_{k-1}}{y_{k}} \Rightarrow \mu_{k}^{j}=P\left\{M_{j}(k) \mid \tilde{Y}_{k-1}, y_{k}\right\}
$$

De Bayes formula

$$
\mu_{k}^{j}=\frac{p\left(y_{k} \mid M_{j}(k), \tilde{Y}_{k-1}\right) P\left\{M_{j}(k) \mid \tilde{Y}_{k-1}\right\}}{\sum_{l=1}^{r} p\left(y_{k} \mid M_{l}(k), \tilde{Y}_{k-1}\right) P\left\{M_{l}(k) \mid \tilde{Y}_{k-1}\right\}}
$$

Estimation of the probabilities μ_{k}^{j} (1)

Definition

$$
\mu_{k}^{j}=P\left\{M_{j}(k) \mid Y_{k}\right\}
$$

Measurement vector partition

$$
Y_{k}=\binom{\tilde{Y}_{k-1}}{y_{k}} \Rightarrow \mu_{k}^{j}=P\left\{M_{j}(k) \mid \tilde{Y}_{k-1}, y_{k}\right\}
$$

De Bayes formula

$$
\mu_{k}^{j}=\frac{p\left(y_{k} \mid M_{j}(k), \tilde{Y}_{k-1}\right) P\left\{M_{j}(k) \mid \tilde{Y}_{k-1}\right\}}{\sum_{l=1}^{r} p\left(y_{k} \mid M_{l}(k), \tilde{Y}_{k-1}\right) P\left\{M_{l}(k) \mid \tilde{Y}_{k-1}\right\}}
$$

likelihood fct. of mode j at time k (Gaussian assumption)

Estimation of the probabilities μ_{k}^{j} (2)

A posteriori probability

$$
\mu_{k}^{j}=\frac{p\left(y_{k} \mid M_{j}(k), \tilde{Y}_{k-1}\right) P\left\{M_{j}(k) \mid \tilde{Y}_{k-1}\right\}}{\sum_{l=1}^{r} p\left(y_{k} \mid M_{l}(k), \tilde{Y}_{k-1}\right) P\left\{M_{l}(k) \mid \tilde{Y}_{k-1}\right\}}
$$

Estimation of the probabilities μ_{k}^{j} (2)

A posteriori probability

Estimation of the probabilities μ_{k}^{j} (2)

A posteriori probability

$$
\mu_{k}^{j}=\frac{p\left(y_{k} \mid M_{j}(k), \tilde{Y}_{k-1}\right) P\left\{M_{j}(k) \mid \tilde{Y}_{k-1}\right\}}{\sum_{l=1}^{r} p\left(y_{k} \mid M_{l}(k), \tilde{Y}_{k-1}\right) P\left\{M_{l}(k) \mid \tilde{Y}_{k-1}\right\}}
$$

Recurrent calculus

$$
\begin{gathered}
P\left\{M_{j}(k) \mid \tilde{Y}_{k-1}\right\}=\sum_{i=1}^{r} P\left\{M_{j}(k) \mid M_{i}(k-1), \tilde{Y}_{k-1}\right\} P\left\{M_{i}(k-1) \mid \tilde{Y}_{k-1}\right\} \\
P\left\{M_{i}(k-1) \mid \tilde{Y}_{k-1}\right\} \approx P\left\{M_{i}(k-1) \mid Y_{k-1}\right\}=\mu_{k-1}^{i}
\end{gathered}
$$

Estimation of the probabilities μ_{k}^{j} (2)

A posteriori probability

$$
\mu_{k}^{j}=\frac{p\left(y_{k} \mid M_{j}(k), \tilde{Y}_{k-1}\right) P\left\{M_{j}(k) \mid \tilde{Y}_{k-1}\right\}}{\sum_{l=1}^{r} p\left(y_{k} \mid M_{l}(k), \tilde{Y}_{k-1}\right) P\left\{M_{l}(k) \mid \tilde{Y}_{k-1}\right\}}
$$

Recurrent calculus

$$
\begin{aligned}
& P\left\{M_{j}(k) \mid \tilde{Y}_{k-1}\right\}=\sum_{i=1}^{r} P\left\{M_{j}(k) \mid M_{i}(k-1), \tilde{Y}_{k-1}\right\} P\left\{M_{i}(k-1) \mid \tilde{Y}_{k-1}\right\} \\
& \quad P\left\{M_{i}(k-1) \mid \tilde{Y}_{k-1}\right\} \approx P\left\{M_{i}(k-1) \mid Y_{k-1}\right\}=\mu_{k-1}^{i} \\
& Y_{k}=\left(\begin{array}{lllll}
y_{k-m} & \ldots & y_{k-1} & y_{k}
\end{array}\right), \quad Y_{k-1}=\left(\begin{array}{llll}
y_{k-m-1} & y_{k-m} & \ldots & y_{k-1}
\end{array}\right)
\end{aligned}
$$

Recurrent calculus

$$
P\left\{M_{j}(k) \mid \tilde{Y}_{k-1}\right\}=\sum_{i=1}^{r} P\left\{M_{j}(k) \mid M_{i}(k-1), \tilde{Y}_{k-1}\right\} P\left\{M_{i}(k-1) \mid \tilde{Y}_{k-1}\right\}
$$

Estimation of the probabilities μ_{k}^{j} (3)

Recurrent calculus

$$
\begin{gathered}
P\left\{M_{j}(k) \mid \tilde{Y}_{k-1}\right\}=\sum_{i=1}^{r} P\left\{M_{j}(k) \mid M_{i}(k-1), \tilde{Y}_{k-1}\right\} P\left\{M_{i}(k-1) \mid \tilde{Y}_{k-1}\right\} \\
P\left\{M_{j}(k) \mid \tilde{Y}_{k-1}\right\}=\sum_{i=1}^{r} p_{i j} \mu_{k-1}^{i}
\end{gathered}
$$

Estimation of the probabilities μ_{k}^{j} (3)

Recurrent calculus

$$
\begin{gathered}
P\left\{M_{j}(k) \mid \tilde{Y}_{k-1}\right\}=\sum_{i=1}^{r} P\left\{M_{j}(k) \mid M_{i}(k-1), \tilde{Y}_{k-1}\right\} P\left\{M_{i}(k-1) \mid \tilde{Y}_{k-1}\right\} \\
P\left\{M_{j}(k) \mid \tilde{Y}_{k-1}\right\}=\sum_{i=1}^{r} p_{i j} \mu_{k-1}^{i} \\
\mu_{k}^{j}=\frac{p\left(y_{k} \mid M_{j}(k), \tilde{Y}_{k-1}\right) P\left\{M_{j}(k) \mid \tilde{Y}_{k-1}\right\}}{\sum_{l=1}^{r} p\left(y_{k} \mid M_{l}(k), \tilde{Y}_{k-1}\right) P\left\{M_{l}(k) \mid \tilde{Y}_{k-1}\right\}} \\
\mu_{k}^{j}=\frac{p\left(y_{k} \mid M_{j}(k), \tilde{Y}_{k-1}\right) \sum_{i=1}^{r} p_{i j} \mu_{k-1}^{i}}{\sum_{l=1}^{r}\left(p\left(y_{k} \mid M_{l}(k), \tilde{Y}_{k-1}\right) \sum_{i=1}^{r} p_{i l} \mu_{k-1}^{i}\right)}
\end{gathered}
$$

Fault modelling

Actuator fault

$$
x_{k+1}=A x_{k}+\left(B+\Delta B_{i}\right) u_{k}+w_{k}
$$

ΔB_{i} : all the columns are null but the $i^{\text {th }}$ that characterizes the fault of the $i^{\text {th }}$ actuator

Fault modelling

Actuator fault

$$
x_{k+1}=A x_{k}+\left(B+\Delta B_{i}\right) u_{k}+w_{k}
$$

ΔB_{i} : all the columns are null but the $i^{\text {th }}$ that characterizes the fault of the $i^{\text {th }}$ actuator

Sensor fault

$$
y_{k}=\left(C+\Delta C_{i}\right) x_{k}+v_{k}
$$

ΔC_{i} : all the rows are null but the $i^{\text {th }}$ that characterizes the fault of the $i^{\text {th }}$ sensor

Fault modelling

Actuator fault

$$
x_{k+1}=A x_{k}+\left(B+\Delta B_{i}\right) u_{k}+w_{k}
$$

ΔB_{i} : all the columns are null but the $i^{\text {th }}$ that characterizes the fault of the $i^{\text {th }}$ actuator

Sensor fault

$$
y_{k}=\left(C+\Delta C_{i}\right) x_{k}+v_{k}
$$

ΔC_{i} : all the rows are null but the $i^{\text {th }}$ that characterizes the fault of the $i^{\text {th }}$ sensor

Assimilation of the faults to changes of models

Toy example 1 : description

Models
$\left(A, B_{1}, C_{1}\right)$: normal functionning $[0,100] \cup[500,800]$ $\left(A, B_{2}, C_{2}\right)$: occurrence of actuator fault $[100,500]$ $\left(A, B_{3}, C_{3}\right)$: occurrence of sensor fault [800, 1000]

Toy example 1 : description

Models

$\left(A, B_{1}, C_{1}\right)$: normal functionning $[0,100] \cup[500,800]$ $\left(A, B_{2}, C_{2}\right)$: occurrence of actuator fault $[100,500]$ $\left(A, B_{3}, C_{3}\right)$: occurrence of sensor fault [800, 1000]

Matrix values

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
0.45 & 0 \\
0 & 0.4
\end{array}\right), \quad \Pi=\left(\begin{array}{ccc}
0.9 & 0.05 & 0.05 \\
0.05 & 0.9 & 0.05 \\
0.05 & 0.05 & 0.9
\end{array}\right) \\
& B_{1}=\left(\begin{array}{ll}
0.1815 & 1.7902
\end{array}\right)^{T}, \quad C_{1}=I_{2 \times 2} \\
& B_{2}=\left(\begin{array}{ll}
1.1815 & 1.7902
\end{array}\right)^{T}, \quad C_{2}=I_{2 \times 2} \\
& B_{3}=\left(\begin{array}{ll}
0.1815 & 1.7902
\end{array}\right)^{T}, \quad C_{3}=1.5 I_{2 \times 2}
\end{aligned}
$$

Toy example 1 : results

Activation probabilities of the different models

Toy example 2 : description

Models with unknown input
$\left(A, B_{1}, C_{1}\right)$: normal functionning $[0,100] \cup[500,800]$
$\left(A, B_{2}, C_{2}\right)$: occurrence of actuator fault $[100,500]$
$\left(A, B_{3}, C_{3}\right)$: occurrence of sensor fault $[800,1000]$

Toy example 2 : description

Models with unknown input
$\left(A, B_{1}, C_{1}\right)$: normal functionning $[0,100] \cup[500,800]$
$\left(A, B_{2}, C_{2}\right)$: occurrence of actuator fault $[100,500]$
$\left(A, B_{3}, C_{3}\right)$: occurrence of sensor fault $[800,1000]$
Matrix values
A, B_{i}, C_{i} identical as the previous case
$E=\left(\begin{array}{ll}0.0129 & -1.2504\end{array}\right)^{T}$
Unknown input
Crenel of magnitude 0.5 between instants 100 and 300

Toy example 2 : results

Activation probabilities of the different models

Toy example 2 : results

Conclusion - outlines

- Comparable performances of the methods based on Kalman filters and finite memory observers

Conclusion - outlines

- Comparable performances of the methods based on Kalman filters and finite memory observers
- Capacity of taking into account of unknown input when using observers (finite memory observers)

Conclusion - outlines

- Comparable performances of the methods based on Kalman filters and finite memory observers
- Capacity of taking into account of unknown input when using observers (finite memory observers)
- Advantages for fault detection strategies (notion of bank of observers)

Conclusion - outlines

- Comparable performances of the methods based on Kalman filters and finite memory observers
- Capacity of taking into account of unknown input when using observers (finite memory observers)
- Advantages for fault detection strategies (notion of bank of observers)
- Actual research: Estimation of the Markov transition matrix

