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In this paper, a new formulation of the problem of mass and energy balance equilibration in the
case of unknown-but-bounded errors is proposed. The bounds of the errors are specified over
both a measurement noise and the balance equations. Both bounds are mainly motivated by
experimental considerations of the measurement precision; with a more general interpretation,
they can be considered as parameters that the user has to adjust to make the reconciliation
possible. The method is particularly suitable for linear models but has been extended to nonlinear
ones as well. Simulations provide results that compare favorably with those of classical
reconciliation methods involving maximum likelihood estimation based on statistical knowledge
of the measurement errors.

1. Introduction

The problems of obtaining reliable estimates of process
variables from measurements (data validation) and of
detecting and isolating gross errors have been well stud-
ied. Historically speaking, likely because of measure-
ment availability, static redundancy equations were first
utilized in the mineral processing and the chemical
industries. The first studies of Ripps (1962),1 Vaclavek
(1969),2 and Smith and Ichiyen (1973)3 were concerned
with data reconciliation using the now classical technique
of equilibration of production balances. In subsequent
stages, this data reconciliation principle was generalized
to processes that are described by algebraic equations
that are either linear in the case of total flow rates4 or
nonlinear in the case of chemical concentrations.5,6

At the same time, data reconciliation was employed
for more general applications than establishing statisti-
cally coherent balances. It was then applied to more
fundamental problems such as detection, localization,
and estimation of gross errors;7,8 diagnosis and observ-
ability of systems;9,10 optimization of sensor loca-
tions;11,12 and the study of the reliability of a measure-
ment system.13 Specific work concerning the numerical
regularization of the estimation technique using a
projection matrix has been performed by Kelly.14

Most approaches to data reconciliation ensure that
the estimates of process variables satisfy the material
and energy balances in either their linear or nonlinear
form. The second important point is that reconciliation
is possible only if redundancy equations, i.e., equations
containing only redundant variables, are available.
Recall that a measured variable is called redundant if
it can be calculated from the remaining measured
variables. As previously mentioned, this redundancy
generally leads to a discrepancy between the equations
and the data that have to be reconciled; thus, it provides
a check on the reliability of a given set of measurements.
Last, it seems relevant to validate and adjust the
measurements, taking into account the degree of preci-
sion of each measurement and key physical laws. Most

of the methods for this use techniques based on statisti-
cal considerations, where the noise affecting the records
is often characterized by the mean and the covariance
of an amplitude probability function. Maximizing the
likelihood function resulting from this probability func-
tion allows one to express the estimation of the true
data. A survey of the methods used in data reconcilia-
tion can be found in Crowe.15 In 1996, Crowe16 inves-
tigated another formulation of the problem of data
reconciliation by using the concept of information
entropy; this approach allows one to deduce the prob-
ability distributions of the data by taking into account
the bounds on the data and/or the variance-covariance
matrix of the data. For the interested reader, some
books on synthesis concerning the subject of data
reconciliation are available, including those of Ragot et
al.,17 Romagnoli and Sanchez,18 Bagajewicz,19 and
Narasimhan and Jordache.20

As mentioned above, most previous investigators have
used statistical criteria such as least squares as the
criteria for calculating the best estimates of process
variables. However, the results provided by such esti-
mators are valid only under the following restrictive
conditions: (1) the nature of the measurement noise
must be known and (2) the model of the process must
be known perfectly.

It can be a difficult task to estimate the validity of
such assumptions, and in a certain number of applica-
tions, it is obvious that both conditions are not fully
satisfied. Therefore, it becomes very hazardous and
mathematically incorrect to reconcile operation data
with regard to an uncertain model without taking this
fact into account. Some attempts in this direction have
been already published by Mandel et al.21 and Maquin
et al.22 An alternative method is proposed here that does
not use any hypothesis about the noise distribution. The
only information needed about the noise is the value of
its bounds. As the process model might be inaccurate,
it is not necessary that the estimate exactly verify the
model; it is only desired that the model residual belong
to a given interval. Indeed, our strategy is based on
interval constraint satisfaction both for the variable
estimations and for the model residuals. From a histori-
cal point of view, the 1985 paper of Himmelblau23 is
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probably one of the first to give a formulation of such
data rectification principles. This idea was confirmed
in the works of Kyriakopoulos and Kalitventzeff24 and
Harikumar and Narasimhan.25 In fact, the proposed
method was based on a least-squares estimate subject
to inequality constraints. More recently, Dovi and Del
Borghi26 generalized the fundamental method of data
reconciliation developed by Crowe16 to allow for the
presence of censored measurements. In a paper pub-
lished in 2001, Soderstrom et al.27 suggested a reconcili-
ation method that also uses inequality constraints for
the determination of the bias within a mixed integer
optimization framework.

Here, our strategy involves inequality constraints on
the estimates and on the residuals of the balance
equations and can be considered as an alternative of
this idea. Moreover, the probability distribution of the
measurement errors is not used, and only bounds on
these errors are considered, which is, perhaps, a less
restrictive approach. The aim of this presentation, based
on the previous paper of Mandel et al.,21 is to provide
the elements necessary for the implementation of a
procedure using this type of formalization based on
inequality constraints.

In section 2, we recall the principle of reconciliation
of measures based on a model and a measurement sy-
stem, and we give an alternative approach to solve this
classical problem based on the satisfaction of inequality
constraints set by the user. Then, in section 3, we pro-
pose an extension of the technique to nonlinear systems.
Section 4 provides numerical results and a discussion.

2. Data Reconciliation. The Linear Case
A linear system (under steady-state conditions) can

be described, in the fault-free case, by the following
relations

where x* is the vector of process variables, z is the vector
of measurements, M is the m × n matrix of model
equations (without loss of generality, M is assumed to
be of full row rank), and ε is a vector of errors due to
measurement noise.

The estimation or data reconciliation problem of
system 1 involves finding a set of adjustments such that
the adjusted values verify model eq 1a with a given level
of satisfaction.

In the context of unknown-but-bounded error, the
noise ε is assumed to verify a relation of the form

where e is a known bound. Consequently, the estima-
tions x̂ are subjected to the constraints

In the context of an approximate model, bounds on
the balance equations can be imposed; thus, we are
looking to adjust the estimates x̂ such that

where the bound r is chosen by the user and can also

be fixed to zero if the user wishes to verify the balance
equations exactly. In this alternative data reconciliation
approach, it is thus desired to correct the raw data with
bounds (eq 2b) and to satisfy approximately the model
equation with a bounded residual (eq 2c). We can say
that, for the user, this is a natural way to reconcile the
data. Indeed, the user has certain knowledge about the
quality of the measurements; the user has also informa-
tion concerning the precision of the model. Conse-
quently, he or she can define a maximum value for the
correction of each variable and a kind of satisfaction
level for the process equations. It should be noticed that
the first point of view has already been taken into
account in the literature; see, for example, the papers
of Harikumar and Narasimhan25 and Narasimhan and
Harikumar.28

Thus, summarizing, the problem of data reconciliation
can be turned into the following constraints

In a more sophisticated situation, the bounds can be
expanded according to upper and lower bounds corre-
sponding to asymmetrical corrections and satisfaction
levels of the constraints

For numerical solution, the system 4 is expressed
using only simple inequalities, i.e.

or

The bounds e and ej are chosen as functions of
empirical knowledge concerning the state of the process
and, in particular, the probable domains of variation of
the different variables. As these bounds express the
amplitudes of the corrections applied to the measure-
ments, they can be indexed on an estimation of the
precision of these measurements. The bounds r and rj
are linked to the degree of satisfaction of the balance
constraints and depend on the relative importance given
to the different balance equations.

Thus, the data reconciliation problem is to find
estimates that satisfy constraints 5. It should be noted
that, when the bound r is set to zero, the balance
equation is forced to be perfectly satisfied. Because of
the nature of the problem (i.e., the presence of inequality
constraints), it is clear that the estimates can no longer
be obtained analytically. Moreover, there is no guaran-
tee that the estimates will be unbiased or will have the
minimum variance. However, many tools are available
to solve a system of linear inequalities, all of which are
referred to as the LMI (linear matrix inequality) con-

model equation:
Mx* ) 0, x* ∈ Rn, M ∈ Rm×n (1a)

measurement equation:
z ) x* + ε, z ∈ Rn (1b)

|ε| e e (2a)

|z - x̂| e e (2b)

|Mx̂| e r (2c)

|z - x̂| e e
|Mx̂| e r

(3)

e e z - x̂ e ej
r e Mx̂ e rj

(4)

-x̂ + z - ej e 0

x̂ - z + e e 0

Mx̂ - rj e 0

-Mx̂ + r e 0

(-I
I
M
-M

)x̂ + (z - ej
-z + e
- rj
r

)e 0 (5)
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cept;29 the reader can refer to a summary explanation
of the solution of LMIs provided in the Appendix.

Generally speaking, for technical and/or financial
reasons, a process might not be completely instru-
mented, in which case some variables are not measured.
This point can easily be taken into account, in the
problem of balance formulation, by means of a matrix
C (of dimension p × n) of measurement selection. The
observability analysis that is required by the presence
of unmeasured variables is not explained here, but the
reader can consult ref 8 for more details. The problem
of the reconciliation of measurements is then expressed
by the set of inequalities

where z ∈ Rp, p e n. Indeed, LMI system 6 is a
straightforward generalization of system 5.

For the problem in which all variables are measured
(system 5), a reduction of the number of inequality
constraints is observed, as corrective terms can be
calculated for measured variables only. Another way of
proceeding consists of keeping the set of equations 5 and
relaxing the constraints related to the unmeasured
variables. Thus, for instance, if the variable k is not
measured, a “large” threshold is chosen for the element
of row k in the vector ej, a “small” threshold is chosen
for the element of same row of vector e, and the
missing measurement can be replaced arbitrarily by 0;
from a practical point of view, this is equivalent to not
enforcing any proximity between the kth variable and
its measurement (since the latter does not exist!).

3. Data Reconciliation. The Nonlinear Case
We now consider the more general case where both

the model and measurement systems are nonlinear and
described by the expressions

This general description includes the case where the
device measurement is linear, i.e., where h reduces to
identity. Thus, according to the previous strategy, the
data reconciliation problem is to find estimates x̂ that
satisfy the bounds on process variables. Thus, general-
izing system 6, the state estimation has to verify the
inequality constraints

By applying the principle of linear balance reconcili-
ation again, we propose linearizing the equations of bal-
ances and using the LMI technique to solve the system
thus produced. At the outset, to apply this algorithm,
it is necessary to have an initial estimation, x̂(0), of the
variables; for the measured variables, the measure-
ments provide appropriate initial values, and for the
unmeasured variables, the user will be guided in his
choice by the a priori knowledge he or she might have

of the process. At step i, linearization of the constraint
functions f and h around a previous solution x̂i gives

with the definitions

The data reconciliation problem defined by eqs 8 can
be replaced by the problem

which corresponds to the analysis of a set of linear
inequalities.

Thus, an iterative algorithm can be easily constructed
for solving the nonlinear data reconciliation problem as
follows:

E1: Set i ) 0. Select an initial value for x̂i (for the
measured variables, their corresponding values can be
used as initial values for the estimates). If measure-
ments are given with an interval representation, an
initial value can be chosen belonging to this interval.

E2: Compute the gradients of the functions f and h
(eqs 9b), and linearize the model equation around
solution at step i (eqs 9a)

E3: Collect all of the constraints of the estimation
problem (problem 10)

E4: Using an LMI routine, solve the linear matrix
inequations, and set x̂i+1 ) x̂

E5: Test for convergence of the solution by analyzing
the series x̂. If x̂ is acceptable, then stop the procedure;
otherwise, i f i + 1 and go to step E2.

4. Examples
First Example. Consider the following academic

model depending on six variables (with a ) 5.5254)

The measurement function (eq 5) is h ) I6 (identity
matrix of dimension 6), i.e., all the variables are
measured. The reconciliation technique is applied with
the bounds r ) -rj ) 10-5. Table 1 presents the results
with data obtained from the simulated process (system
11). The upper and lower bounds of the measurements
are given in rows 2 and 3; their values were reasonably

f̃(x) ) fi + Fix

h̃(x) ) hi + Hix
(9a)

Fi ) ∂f
∂xT|

x)x̂i

fi ) f(x̂i) - Fix̂i

Hi ) ∂h
∂xT|

x)x̂i

hi ) h(x̂i) - Hix̂i

(9b)

-Hix̂ - hi + z - ej e 0

Hix̂ + hi - z + e e 0

Fix̂ + fi - rj e 0

-Fix̂ - fi + r e 0

(10)

x1x2 + x5 - a ) 0

exp(-x1) + exp(-x2) - 1 ) 0

x1x3
2 - x6 ) 0

x4
3 - x1x3 ) 0

x5x3
2 + x1/x4 - x6 ) 0

(11)

-Cx̂ + z - ej e 0
-z + Cx̂ + e e 0
Mx̂ - rj e 0
-Mx̂ + r e 0

(6)

f(x*) ) 0, f ∈ Rm

z ) h(x*) + ε, h ∈ Rp
(7)

-h(x̂) + z - ej e 0
h(x̂) - z + e e 0
f(x̂) - rj e 0
-f(x̂) + r e 0

(8)
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fixed by the user according to available knowledge on
the precision of the measurements. A better perception
of the measurements can be obtained by considering the
center (row 4) and the radius of the measurement
interval (row 5). These values give an idea of the mean
measurement values and their dispersion.

The estimations are given in the sixth row. The
reconciliation was solved by using the iterative scheme
of section 3 with initial estimations equal to the centers
of the measurement intervals. Only 12 iterations were
required to satisfy all of the constraints. The seventh
line of Table 1 gives the correction ratio obtained by
dividing the magnitude of the correction (difference
between the center of the measurement interval and the
estimate) by the center of the measurement interval;
the magnitudes of these ratios are reasonably small, and
therefore, roughly speaking, there are no abnormal data.
In other situations, a gross ratio magnitude can be used

to detect and localize gross errors or bias in the raw
data.7 All of the mass balances (eq 11) computed with
the reconciled values are close to zero, with a precision
of 3 × 10-6, which perfectly agrees with the selected
bounds r and rj.

The second part of the table gives the results obtained
when applying a classical nonlinear least-squares pro-
cedure. For that solution approach, we considered as
measurements the values obtained by taking the centers
of the measurement intervals; for sake of simplicity, the
weighting factors w were chosen proportional to the
normalized dispersions zr/zc (row 5 of the first part of
Table 1). The two estimates LMI and LS are in the same
vicinity, and the corrective ratios have comparable
magnitudes; however, it would be hazardous to go
further in this comparison because of the very different
concepts of the approaches.

Second Example. This test problem consists of a
continuous stirred-tank reactor (CSTR) with a second-
order exothermic reaction and heat removal by a coil
or jacket. A mathematical model of the CSTR has been
developed according to the principle of mass and energy
conservation.30 This example has been used by many
authors in the technical literature and constitutes a
kind of benchmark for parameter estimation, state
estimation, diagnosis, and control. The feed is charac-
terized by the rate F (m3/s), the concentration of the
reactant Ci (kgmol/m3), and the temperature Ti (°C). The
output is characterized by analogous quantities F, C,
and T. For the coolant, Fc (m3/s) and Tci (°C) denote the
rate and the temperature, whereas for the output, the
same quantities are noted Fc and Tc. Here, we consider
the system only under steady-state conditions

Table 2 lists the values of the parameters used in the
model.

Columns 3 and 5, respectively, of Table 3 contain the
lower and upper bounds for the measurements, which
were used for the computation of the estimations
(column 4). As the process has been simulated, the true
values are available and are indicated in column 2. All
of the constraints concerning the magnitudes of the
corrections are fulfilled, and the three balance equations
are closed to zero with a precision of 10-5 (Table 4). It
is somewhat difficult to analyze the inconstancy and/or
the consistency of the raw data through the balance
residuals. Indeed, we must bear in mind the magnitudes
of the different terms allowing for the calculations of
these residuals. It is important to note that residuals
are computed as algebraic sums of several quantities;
if one of these quantities is negligible with respect to
the others, then a bad value for this quantity will have
a very small effect on the residual.

For example, we observe that the second mass balance
equation in problem 12 is the algebraic sum of three
quantities; Table 5 indicates that these three quantities
have comparable magnitudes, and consequently, no par-

Table 1. Measurements and Estimations (LMI and LS)

variable 1 2 3 4 5 6

measured lower bound Z 0.67 5.35 4.42 1.54 0.62 18.01
measured upper bound zj 0.91 7.23 5.98 2.08 0.84 24.37
interval center zc ) (zj + z)/2 0.79 6.29 5.2 1.81 0.73 21.19
interval radius zr ) (zj - z)/2 0.12 0.94 0.78 0.27 0.11 3.18
estimation xj 0.768 6.215 5.325 1.599 0.751 21.78
correction ratio 100|x̂ - zc|/zc 2.4 1.2 2.4 11.7 2.6 2.8
weight w ) zr/zc 0.15 0.15 0.15 0.15 0.15 0.15
LS estimation 0.742 6.468 5.73 1.620 0.728 24.39
correction ratio 5.3 2.3 2.5 12.5 0.4 0.1

Table 2. Parameter Values

parameter value parameter value

V 7.08 m3 cp 1.815 × 105 J/kg‚°C
Vc 1.82 m3 cpc 4184 J/kg‚°C
A 5.40 m2 F 19.2 kg/m3

U 3550 J/s‚m2‚°C Fc 1000 kg/m3

K 273.16 °C k0 0.0744 m3/s‚kgmol
R 8314.39 J/kgmol E0 818 000 J/kgmol
H -9.86 × 107 J/kgmol

Table 3. Measurements and Estimations

true
value

measured
lower bound estimation

measured
upper bound

correction
ratio

Fc 0.0073 0.007 0.007 23 0.008 3.6
F 0.0075 0.007 0.009 92 0.012 -4.5
Ci 2.88 2.15 2.5744 3.0 0
C 1.133 1.1 1.1645 1.25 0.9
Ti 66.075 60 63.7390 70 1.9
Tci 27.00 20 29.3692 30 -17.4
Tc 50.50 45 45.6308 55 8.7
T 88.00 86 89.4017 92 -0.5

Table 4. Balance Residuals before and after
Reconciliation

balance residuals with interval center

1 2 3

before equilibration -0.0001 -0.0062 -0.0048
after equilibration <10-5 <10-5 <10-5

Table 5. Contributions of the Different Terms of the
Second Residual Equation

term contribution

F
V

(Ti - T) -0.0360

H
Fcp

kC 2 -0.0559

UA
VFcp

(T - Ti) 0.0199

0 ) F
V

(Ci - C) - kC2

0 ) F
V

(Ti - T) - H
Fcp

kC 2 - UA
VFcp

(T - Tc)

0 ) UA
VcFccpc

(T - Tc) -
Fc

Vc
(Tc - Tci)

k ) k0 exp[-
E0

R(K + T)]
(12)
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ticular problem of sensitivity occurs in this example.
Moreover, the magnitudes of the different terms are sig-
nificatively greater than the magnitude of the residual
(-0.0062, Table 4); thus, the residual can be considered
small, suggesting the absence of gross errors in the data.

For analysis of the results, Table 6 exhibits the
influence of the modification of some bounds on the
reconciliation. The same example is used for two simu-
lations. The left part of Table 6 gives the results for the
case where the interval on the temperatures (Ti, Tci)
have been reduced by 3 °C, whereas the right part of
the table shows a very large increase of the temperature
interval T (one can also consider that a large interval
might represent the absence of any measurement).

A comparison of the estimations (Tables 5 and 6)
shows (for this example) that the sensitivity to the
length of the interval is low; in particular, the suppres-
sion of a measurement by increasing the corresponding
interval, with the restriction that the system remains
observable, does not provide any estimation problem.

It is clear, however, that, from a general point of view,
the characteristics of an interval (center and length)
might influence the estimation. If, for a particular
measurement, the corresponding interval is completely
separate from the true data, the LMI system becomes
inconsistent, i.e., no solution exists. For example, taking
the measurement interval T ) [100 120] does not allow
for the existence of a solution. This remark can be
applied intensively if it is desired to detect and isolate
gross errors affecting the measurements.

Another point to analyze is the convergence of the
LMI solution. It is well-known that results obtained by
LMI solvers are dependent on the starting point. For
the given example, but only for this example, the
estimations are weakly influenced by this starting point.
The estimations collected in Table 7 were obtained with
three different starting points. The first column lists the
names of the estimated variables. The second column
gives the estimated variables when the procedure is
initialized with the lower bound of the measurement
interval (see Table 3, third column). The two last
columns report the estimations obtained when the
initialization uses the center and the upper bound,
respectively, of the measurement interval. Thus, it can
be concluded that, for this example and also for many

others, the state estimation is not very sensitive to the
choice of the starting point.

Discussion
As explained in the Introduction, the LMI approach

provides a guarantee that the state estimation perfectly
satisfies the model constraints and the measurement
intervals. Indeed, the method can furnish all admissible
solutions satisfying these constraints; however, the
numerical resolution of the LMI is often reduced in
giving one solution, for example, the solution corre-
sponding to the interior point (see the Appendix). It
would be more interesting to enumerate all admissible
solutions, those satisfying all of the LMI. This is a
tedious task, and the obtained result would be not very
convenient for the user.

Let us illustrate the latter point with a toy example.
Consider the reconciliation problem

According to the LMI reconciliation approach, the state
estimates are defined as the set of constraints

Direct application of the interior approach gives the
following (and trivial) results

In Figure 1a, the solution is given in the plane (x2,
x3). We have indicated the domain in which the solution
lies (defined by constraints 13 and corresponding to the
intersection of three strips) and the LMI interior point
(eq 14). On one hand, it is clear that the interior point
does not reflect the set of admissible solutions; on the
other hand, the whole set of admissible solutions
expressed by constraints 13 is not very easy to use. A
compromise would be to approximate the whole set of
solutions (constraints 13) by independent constraints.
The reader will verify that the following solution satis-
fies all of the constaints and is suitable for use

Table 6. Sensitivity to Bound Modifications

measured
lower bound estimation

measured
upper bound

measured
lower bound estimation

measured
upper bound

Fc 0.007 0.007 02 0.008 0.007 0.007 28 0.008
F 0.007 0.009 25 0.012 0.007 0.009 78 0.012
Ci 2.15 2.7473 3.0 2.15 2.6342 3.0
C 1.1 1.1843 1.25 1.1 1.1696 1.25
Ti 63 61.5564 67 60 64.9672 70
Tci 23 26.9492 27 20 29.1613 30
Tc 45 45.0512 55 45 45.8386 55
T 86 89.2858 92 40 91.4940 150

Table 7. Sensitivity to the Starting Point

lower bound interval center upper bound

Fc 0.007 23 0.007 23 0.007 23
F 0.009 92 0.009 92 0.009 92
Ci 2.5744 2.5745 2.5745
C 1.1646 1.1646 1.1646
Ti 63.7386 63.7377 63.7383
Tci 29.3701 29.3687 29.3676
Tc 45.6299 45.6313 45.6324
T 89.401 92 89.4019 89.4017

x1 - x2 - x3 ) 0

x1 ∈ [12 14]

x2 ∈ [4 6]

x3 ∈ [7 9]

-10-5 e x̂1 - x̂2 - x̂3 e10-5

x̂1 ∈ [12 14]

x̂2 ∈ [4 6]

x̂3 ∈ [7 9]

(13)

x̂1 ) 13, x̂2 ) 5, x̂3 ) 8 (14)

x̂2 ∈ [4.5 5.5]

x̂3 ∈ [7.5 8.5]
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In Figure 1b, this set of solutions is thus defined by
a box (in gray color) in the plane (x2, x3). For each
solution inside this box, x̂1 can be easily defined by direct
substitution x̂1 ) x̂2 + x̂3.

Summarizing, the point we have discussed with re-
spect to this toy example highlights the fact that the
reconciliation problem, when analyzed with an LMI ap-
proach, can produce a set of admissible solutions. More-
over, these solutions can be described under a conve-
nient form (independent intervals). The previous discus-
sion might be the starting point for a more elaborate
contemplation of the problem of data reconciliation.

5. Conclusion
The technique described herein represents an inter-

esting alternative to the classical technique of data
reconciliation using the principle of the maximization
of the likelihood function based on the distribution of
the measurement errors. It requires very few theoretical
hypotheses for implementation and is essentially based
on semiempirical knowledge about the variable plau-
sible confidence domains, as well as the definition of a
satisfaction threshold for the different balances that
depends on the confidence that is placed in them.

We have shown that the classical problems of material
balance equilibration can be solved: total balances,
partial balances, and balances with missing measure-
ments. The total balance generally refers to the linear
case (section 2) and partial balances to the nonlinear
case (section 3); to take into account the fact that some

measurements are missing, we have considered in the
given example that the measurement interval becomes
large. Various extensions can be envisaged. The first
concerns the development of a reconciliation method
that simultaneously uses the precise knowledge (struc-
turally exact balances equations), the imprecise knowl-
edge (balances expressed by inequality constraints), the
distribution functions of the errors (when they are
available), and the inequality constraints on the cor-
rection rate (when the probability distribution functions
are unknown). The second extension concerns the
integration of fuzzy models or constraints in the form
of propositions (for instance, the flow rate of a given
stream of the process is “large”) or in the form of rules
composed of premises and consequences (for instance,
if the flow rate of a given stream of the process is
“small”, then the concentration of the corresponding flow
is “high”). That would allow all of the available knowl-
edge on a process to be used with associated weights.

Finally, it would be interesting to examine the case
of dynamic systems. A priori, by making an abstraction
of the problems associated with the calculation time, the
technique proposed here can be applied to such systems
because it suffices to express at any given moment the
set of constraints (on the rates of correction and on the
degree to which the balances must be satisfied) and to
find the solution that verifies them. Studies of this
extension are currently under way.

Nomenclature
x* ) state variable (true value), dimension n
x̂ ) state variable (estimation), dimension n
z ) state measurement, dimension p (p e n)
ε ) error measurement, dimension n
M ) incidence matrix, dimension m × n
C ) measurement matrix, dimension p × n
r ) lower bound for the model, dimension m
rj ) upper bound for the model, dimension m
r ) common bound for the model, dimension m
e ) lower bound for the measurement error, dimension p
ej ) upper bound for the measurement error, dimension p
e ) common bound for the measurement error, dimension

p
f ) model equation, dimension m
h ) measurement equation, dimension p
Iq ) identity matrix, dimension q × q
F ) gradient of f, dimension m × n
H ) gradient of h, dimension p × n

Appendix: Linear Matrix Inequality
A linear matrix inequality takes the form

where x ∈ Rm, Fi ∈ Rn×n, Rm is the set of all real vectors
of length m, and Rn×n is the set of all real n × n
matrices. The symmetric matrices Fi ) Fi

T, i ) 0, ..., m,
are fixed, and x is the variable. The matrix F(x) is an
affine function of the elements of x and is a positive
definite matrix, that is, zTF(x)z > 0, ∀ z * 0, z ∈ Rn.

LMI A1 is equivalent to n polynomial inequalities.
Solving LMIs means determining whether the prob-

lem is feasible and, if it is, computing a feasible point.
Many algorithms for solving LMI problems,29 including
the ellipsoid algorithm are available. Although this
might not be the most efficient algorithm, it is very
simple to apply.

Figure 1. (a) Constraints and interior point solution. (b) Con-
straints and set of independent solutions.

F(x) ) F0 + ∑
i)1

m

xiFi > 0 (A1)
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The idea is as follows: First, we start with an ellipsoid
E(0) that is guaranteed to contain the optimal point.
Then, we compute a cutting plane (that passes through
the center x(0) of E(0)) to better localize the optimal point.

To determine this cutting plane, we note that, if x(0)

satisfies LMI A1, then there exists a nonzero u such
that

Define g by

for i ) 1, ..., m. Then, for any z satisfying

we have

From eq A3, one can deduce

From eqs A2 and A4, we deduce that uTF(z)u > 0. It
follows that every feasible point lies in the half space
{z|gT(z - x(0)) < 0}, i.e., the vector g defines a cutting
plane for the LMI problem at the point x.

We then know that the sliced half-ellipsoid

contains the optimal point. We compute the ellipsoid E(1)

of minimum volume that contains this sliced half-
ellipsoid; E(1) is guaranteed to contain the optimal point.
The process is then repeated.
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uTF(x(0))u > 0 (A2)

gi ) -uTFiu (A3)

gT(z - x(0)) < 0 (A4)

uTF(z)u ) uTF(x(0))u + uT[F(z) - F(x(0))]u

) uTF(x(0))u + uT[∑
i)1

m

(zi - xi
(0))Fi]u

uTF(z)u ) uTF(x(0))u + ∑
i)1

m

(zi - xi
(0))gi (A5)

E(0) ∩ {z|gT(z - x(0)) < 0}
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