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Abstract: In this paper, a fault detection method is developed for switching
dynamic systems with unknown inputs. These systems are represented by several
linear models, each of them being associated to a particular operating mode. The
proposed method is based on Finite Memory Observers and mode probabilities
with the aim of finding the system operating mode and estimating the unknown
input. The method also uses a priori knowledge information about the mode
transition probabilities represented by a Markov chain. The proposed algorithm
is of supervised nature where the faults to be detected are a priori indexed
and modelled. In this work, the method is applied for the fault detection
of a linear system characterized by a model of normal operating mode and
several fault models. Then, it applied for fault detection in the case of a linear
system with unknown input where state and unknown input estimation are
done simultaneously. A comparison with the Generalized Pseudo-Bayesian method
shows the validity and some advantages of the suggested method.
Copyright c©2005 IFAC.
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1. INTRODUCTION

As an evidence, control of systems is becoming more
and more sophisticated; that is due to the combined
fact that systems are naturally complex but also be-
cause it is often desired to manage all things affecting
the system. This motivates researches on reliability,
availability and security. In this field, FDI (Fault
Detection and Isolation) has been developed over the
two last decades (Patton et al., 1989), (Blanke et

al., 2003). A common way to FDI is often based on
the state estimation of a process which also produces

an estimation of the process output. In general a sim-
ple comparison of estimated and measured outputs is
used to design a set of residuals that are sensitive to
faults. Thus, state estimation is a key point of FDI.
Generalized Pseudo-Bayesian first order approach
(GPB1) (Bar-Shalom, 1990) is a powerful tool to
track the behaviour evolution of the process, with
also based on residual information. In fact, process
can be characterised by one or several models for
normal operating conditions and by another set of
models describing the different situations of misfunc-
tionning affecting sensors and actuators (that are



the consequence of damage of process components).
This set of models can be used to describe the
overall behaviour of the process. For this purposes,
the multiple model strategy which is often used is
exploited in the GPB1 approach. In the topic of
state estimation, the GPB have a wide range of
applications mainely in tracking targets (Bar-Shalom
et al., 1989),(Bar-Shalom, 1990). In the last few
years, the multiple model approach has found a wide
spectrum of application, including state estimation
(Bar-Shalom et al., 1989), (Bar-Shalom, 1990), (Bar-
Shalom and Li, 1993), (Hanlon and Maybeck, 1998),
control (Murray-Smith and Johansen, 1997) and
modelling (Gasso et al., 2001). In general, a parallel
bank of filters is used; where each filter is based on
a local model representing a particular behaviour
of the real process. The evaluation of the residuals
between filter outputs and observed process out-
puts allows one to design fault detectors. The GPB
method is based mainely on the Kalman filter and
mode probabilities. In this work, the Kalman filter
is replaced by a Finite Memory Observer (FMO)
(Kratz et al., 1994),(Medvedev, 1996),(Nuninger et

al., 1998) which shows interesting characteristics that
are mainely related to the fact that the estimate at
time k is independent from previous one at time k−1.
Moreover, a FMO is less influenced by system noises
compared to the Kalman filter.

This paper is organized as follows: In section 2,
the development of the finite memory observer is
described. In the section 3, the FMO is used for
the estimation of the unknown input. The section
4, presents the proposed method based on an FMO,
within the framework of switching systems, in order
to detect the changing regime. In section 5, the
FMO with unknown input is used for simultaneously
detecting the changes of modes and estimating the
unknown input. Finally, a conclusion is drawn on
the use of FMO for switching systems and on the
suggested techniques.

2. A FINITE MEMORY OBSERVER

A Finite Memory Observer uses measurements in a
finite time interval only. Consider the discrete time
and invariant following system:

{

xk+1 = Axk + Buk + Gwk

yk = Cxk + vk

(1)

where xk is the state vector at time k, A is the state
matrix, uk is the input vector at time k, B is the
input gain matrix, C is the output gain matrix, vk

and wk represents respectively, the state and mea-
surement noises and yk is the output of the system
at time k.

In the noise-free case, the system is described by:
{

xk+1 = Axk + Buk

yk = Cxk
(2)

Observing the system evolution on the time horizon
[k − m, k] and following the classical Chow-Willsky
scheme ((Chow and Willsky, 1984)), we can write:

Yk = Pmxk−m + BmUk + GmWk + Vk (3)

with :

Zk =
[

zT
k−m zT

k−m+1 . . . zk

]T
, Z ∈ {Y, U, W, V }

(4)

Pm =
[

CT (CA)T . . . (CAm)T
]T

(5)
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(7)

The estimate of the state x̂k−m, at time k−m, which
minimizes the the criterion Jk = ‖Pmxk−m+BmUk−
Yk‖

2 subject to xk−m, can be obtained easily using
the least square method

x̂k−m = (PT
mPm)−1PT

m(Yk − BmUk) (8)

The state estimate at the final time k of the obser-
vation window is obtained by integrating the system
(2):

x̂k = Amx̂k−m + TmUk (9)

where

Tm =
[

(Am−1B)T (Am−2B)T . . . BT 0
]T

(10)

Thus, at each time k, the expression of the state
estimate is defined by:

x̂k = RmYk + SmUk (11)

with

Rm = Am(PT
mPm)−1PT

m (12a)

Sm = Tm − Am(PT
mPm)−1PT

mBm (12b)

3. A FINITE MEMORY OBSERVER WITH
UNKNOWN INPUT

The finite memory observer can be used for the
estimation of unknown input by considering it as



a state variable of the system. The unknown input
system is written as follows:

{

xk+1 = Axk + Buk + Edk + Gwk

yk = Cxk + vk
(13)

where dk is the unknown input at time k and E is
the unknown input gain matrix.

The following assumption is made:

dk+1 = dk + δk

where δk is a random noise. In this way, time-varying
unknown input can be taken into account.

An augmented system can be written as follows:
{

x
′

k+1 = Aax
′

k + Bauk + Gaw
′

k

yk = Cax
′

k + vk

(14)

with

x
′

k =
[

xT
k dT

k

]T
, w

′

k =
[

wT
k δT

k

]T

Aa =

[

A E

0 I

]

, Ba =

[

B

0

]

Ca =
[

C 0
]

and Ga =

[

G 0
0 I

]

The augmented state estimate x̂
′

k−m can be carried
out as in the previous case:

x̂
′

k−m = (PT
m,aPm,a)−1PT

m,a(Yk − Bm,aUk) (15)

where the matrix Pm,a and Bm,a are built as the
matrix Pm (5) and Bm (6), by replacing matrices A,
B and C respectively by Aa, Ba and Ca.

As previously, expression of the augmented state
estimate at time k is deduced from (15):

x̂
′

k = Am
a x̂

′

k−m + Tm,aUk (16)

with

Tm,a =
[

(Am−1
a Ba)T (Am−2

a Ba)T . . . BT
a 0

]T

(17)

This formulation allows one to simultaneously obtain
state and unknown input estimates of the system.

Example 1: Consider the following unknown input
system:

xk+1 =

[

0.45 0
0 0.4

]

xk +

[

0.1815
1.7902

]

uk

+

[

0.0129
−1.2504

]

dk +

[

1
10

]

wk

yk =

[

1 0
0 1

]

xk + vk

First a constant unknown input (δk is centered) that
occurs in a specified time interval is considered. Af-
terwards, we consider an unknown input with a ramp
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Figure 1. Constant unknown input estimation
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Figure 2. Variable unknown input estimation

shape (the mean value of δk is different from zero).

Examination of figure 1 allows us to note the good
estimation of the unknown input, in spite of a certain
delay due to the horizon of observation of the OMF
(chosen here equal to 11 (m = 10)). Figure 2
presents similar results when the unknown input
evolves according to a ramp.

4. FMO FOR SWITCHING SYSTEMS

In this section, we consider a system represented
by a set of models Mi, i = 1, . . . , r; each model
representing a particular behaviour of the system.
The objective is to detect, at each moment, the active
model and simultaneously to estimate the state of the
system. The transitions from a model to another one
are assumed to be described by a Markovien process
governed by the a priori known Markov transition
matrix Π given by:

Π =







p11 · · · p1r

...
. . .

...
pr1 · · · prr







where pij is the mode transition probability from
the model Mi to the model Mj ; we note µk

j the

probability that the jth model is active at time k.

4.1 Development of the method

Consider the jth model described by:

Mj :

{

xk+1 = Ajxk + Bjuk + Gjwk

yk = Cjxk + vk
(18)



The state estimation of this model is carried out
using the FMO described in section 2 to give the
following equations:

x̂
j
k−m = (PT

j,mPj,m)−1PT
j,m(Yk − Bj,mUk) (19)

and
x̂

j
k = Am

j x̂
j
k−m + Tj,mUk (20)

where the matrices Pj,m, Bj,m and Tj,m are built
using the definitions (5), (6) and (10) replacing ma-
trices A, B and C by matrices Aj , Bj and Cj related
to the jth model.

The state estimate x̂k of the switching system is then
computed as a weighted sum of the states of the
“local” models:

x̂k =

r
∑

j=1

x̂
j
kµ

j
k (21)

Following the work of Bar-Shalom (Bar-Shalom,
1990), the probability that model j is in effect at
time k is computed in the following way:

µ
j
k = P{Mj(k)|Yk} (22)

Define Ỹk−1, the observation vector carried out on
the horizon [k − m, k − 1]; we have:

Yk =
[

Ỹ T
k−1 yT

k

]

(23)

Equation (22) can then be written as:

µ
j
k = P{Mj(k)|Ỹk−1, yk} (24)

Using the Bayes formula, this probability can be
transformed into:

µ
j
k =

p
[

yk|Mj(k), Ỹk−1

]

P{Mj(k)|Ỹk−1}

∑r

l=1
p

[

yk|Ml(k), Ỹk−1

]

P{Ml(k)|Ỹk−1}

(25)

In order to alleviate the notations, let us introduce:

Li(k) = p
[

yk|Mi(k), Ỹk−1

]

(26)

Using the total probability theorem, the activation
probability of the model j at time k, according to
the active model at the time k− 1 can be written as:

P{Mj(k)|Ỹk−1} =
r

∑

i=1

P{Mj(k)|Mi(k − 1), Ỹk−1}P{Mi(k−1)|Ỹk−1}

(27)

To obtain a recurrence on the computation of the µ
j
k,

we define the following approximation:

P{Mi(k − 1)|Ỹk−1} ≈ P{Mi(k − 1)|Yk−1} = µi
k−1

(28)

Which means to consider that the information given
by the first vector of observation yk−m−1 of the

vector Yk−1 defined on the horizon [k−m− 1, k− 1]
is not very important and can be neglected (which
depends obviously on the selected horizon). In this
case, considering equations (25) to (28) and noticing
that, by definition, P{Mj(k)|Mi(k − 1), Ỹk} = pij ,
the following recurrence on the probability that the
system operates according to the model j at the
moment k can be established:

µ
j
k =

Lj(k)
∑r

i=1
pijµ

j
k−1

∑r

l=1
Ll(k)

∑r

i=1
pilµ

j
k−1

(29)

4.2 Fault models

An actuator fault can be modelled by ”modifying”
the appropriate column of the control input matrix
B. Thus, a fault on the ith actuator is described by
writing the following equation:

xk+1 = Axk + (B + ∆Bi)uk + wk

where ∆Bi is a matrix of same dimension of B; all
of its columns are null except the ith which charac-
terizes the fault on the ith actuator.

On a same way, a sensor fault is described by:

yk = (C + ∆Ci)xk + vk

where ∆Ci and C have the same dimension; all of its
columns are null except the ith whicn characterizes
the fault on the ith sensor.

4.3 An application example

For the application of the suggested method, we
consider a model of normal operating (A1, B1, C1), a
model of fault actuator (A2, B2, C2) and a model of
sensor faults (A3, B3, C3), with the various matrices
being defined by:

Ai =

[

0.45 0
0 0.4

]

, i = 1 . . . 3

B1 =
[

0.1815 1.7902
]T

, C1 =

[

1 0
0 1

]

,

B2 =
[

1.1815 1.7902
]T

, C2 =

[

1 0
0 1

]

,

B3 =
[

0.1815 1.7902
]T

, C3 =

[

1.5 0
0 1.5

]

.

To test the method, the following scenario was estab-
lished: initially the system normally operates, then at
time 100, an actuator fault occurs, at time 500, the
system returns to the normal operating mode and,
at time 800, sensor faults are introduced.

The results are presented at the figures 3, 4 and
5 where the changes of mode clearly appear; the
mode probabilities of the corresponding models, in
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Figure 3. Activation probability of model 1
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Figure 4. Activation probability of model 2
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Figure 5. Activation probability of model 3

their respective operation domains, fluctuate around
one and thus a detection of the fault is carried out.
Clearly, the results of the suggested method are
better than those of GPB1 method. This fact can
be explained by the sensitivity of GPB1 to the noise
affecting the system state (the signal to noise ratio
in the examples is equal to 10%) . This, allows us to
conclude that the use of a finite memory observer, for
fault detection in switching systems, is less sensitive
to noise than traditional GPB methods.

5. EXTENSION OF THE METHOD TO
UNKNOWN INPUT SYSTEM

The suggested method described in the previous sec-
tion can be applied to unknown input systems. In
this context, the finite memory observer of the second
section is replaced by a finite memory observer with
unknown input (see section 3).

The jth model is written as follows:

Mj

{

xk+1 = Ajxk + Bjuk + Edk + Gwk

yk = Cjxk + vk

where dk is the unknown input at the time k and E

is the unknown input gain matrix.

Using an augmented model for each model Mj, as
mentioned in section 3, the state and the unknown
input can be simultaneously estimated. The estima-
tion of the system state is then obtained following
the steps given in subsection 4.1.

Example 2: We consider the same models of nor-
mal operation, actuator fault and sensor faults as
described previously, but under the effect of the un-
known input dk whose influence matrix is:

E =
[

0.0129 −1.2504
]T

In order to test the method, the following scenario
was established: initially the system normally oper-
ates, at time 100 an unknown input occurs with a
constant magnitude, then at time 200, an actuator
fault occurs, at time 300, the unknown input becomes
null, at time 500, the system returns to the normal
operating mode and, at time 800, sensor faults are
introduced.

Clearly the results, in the presence of noise, are
shown on figures 6 to 8, highlights the changes
from one mode to another, allowing the detection
of faults. The figure 9 shows the estimation of the
unknown input in the absence of noise. However, in
the presence of noise (the signal to noise ratio is
equal to 10%), this estimate is given in figure 10. We
can claim that the use of a finite memory observer
with unknown input in switched system, for fault
detection and unknown input estimation, gives good
results in spite of the presence of noise.
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Figure 6. Activation probability of model 1 in the
presence of noise

6. CONCLUSION

In this work, the structure of a Finite Memory Ob-
server is proposed to handel the FDI issue under the
eventual presence of unknown input. This kind of
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Figure 7. Activation probability of model 2 in the
presence of noise
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Figure 8. Activation probability of model 3 in the
presence of noise

observer was applied within the framework of Marko-
vian switching systems for which the switching event
between models must be detected. Comparison of the
obtained results with those of GPB approach was
carried out on a computer simulation example. The
use of a finite memory observer, based on measured
outputs only, in contrast to the GPB1 method which
uses estimates, gives better results, especially in the
presence of noises.

Finally, the suggested method was extended to the
case of systems subjected to unknown input. In this
situation, the detection of the moments of commuta-
tion is performed with the estimation of the unknown
input.
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Figure 9. Unknown input estimation in the absence
of noise
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