One-Class SVM in Multi-Task Learning

Xiyan He, Gilles Mourot, Didier Maquin & J@&sRagot
Centre de Recherche en Automatique de Nancy, CNRS UMR 7039 ¢ditBivenri Poincaé, Nancy-I
2, avenue de la f@&t de Haye, 54500 VandceuvessiNancy, France

Pierre Beauseroy & AnérSmolarz
Institut Charles Delaunay, STMR CNRS UMR 6279 - Univemd& Technologie de Troyes
12, Rue Marie Curie, BP 2060, F-10010 Troyes, France

ABSTRACT: Multi-Task Learning (MTL) has become an active reskaopic in recent years. While most
machine learning methods focus on the learning of taskgpengently, multi-task learning aims to improve
the generalization performance by training multiple msdiatasks simultaneously. This paper presents a new
approach to multi-task learning based on one-class Suppotbr Machine (one-class SVM). In the proposed
approach, we first make the assumption that the model paganvadties of different tasks are close to a certain
mean value. Then, a number of one-class SVMs, one for eakhaiagslearned simultaneously. Our multi-task
approach is easy to implement since it only requires a sirmaldification of the optimization problem in the
single one-class SVM. Experimental results demonstraeffiectiveness of the proposed approach.

1 INTRODUCTION by training multiple related tasks simultaneously. The
main idea is to share what is learned from different

Classical machine learning technologies havd@SKS €.9, @ common representation space or some
achieved much success in the learning of a single tagk'©del parameters that are close to each other), while
at a time. However, in many practical applicationstaSkS are trained in paral_lel (Caruana 1997). Previous
we may need to learn a number of related tasks oyorks have shown emplrl_cally as well as theoretically
to rebuild the model from new data, for example,that the multi-task learning framework can lead to

in the problem of fault detection and diagnosis of MOre intelligent learning models with a better perfor-
a system that contains a set of equipmentgriori ~mance (Caruana 1997, Heskes 2000, Ben-David and

identical but working under different conditions. Schuller 2003, Evgeniou et al. 2005, Ben-David and

Here “an equipment’” may be a simple machine (aBOrbely 2008).
pump, a motor, ...), a system (a car, an airplane, ...), In recent years, Support Vector Machines (SVM)
or even an industrial plant (nuclear power plant, ...)(Boser et al. 1992, Vapnik 1995) have been success-
This may be the case for a car hire system where wéully used for multi-task learning (Evgeniou and Pon-
have a fleet of vehicles to serve a set of customerdil 2004, Jebara 2004, Evgeniou et al. 2005, Widmer
In industry, it is common to encounter a number ofet al. 2010, Yang et al. 2010). The SVM method was
a priori identical plants, such as in the building or initially developped for the classification of data from
maintenance of a fleet of nuclear power plants or of dwo different classes by a hyperplane that has the
fleet of their components. In such cases, the learnintprgest distance to the nearest training data points of
of the behavior of each equipment can be consideredny class (maximum margin). When the datasets are
as a single task, and it would be nice to transfemot linearly separable, the “kernel trick” is used. The
or leverage the useful information between relatedasic idea is to map the original data to a higher di-
tasks (Pan and Yang 2010). Therefore, Multi-Taskmensional feature space and then solve a linear prob-
Learning (MTL) has become an active research topidem in that space. The good properties of kernel func-
in recent years (Bi et al. 2008, Zheng et al. 2008, Guions make support vector machines well-suited for
and Zhou 2009, Birlutiu et al. 2010). multi-task learning.

While most machine learning methods focus on In this paper, we present a new approach to multi-
the learning of tasks independently, multi-task learntask learning based on one-class Support Vector Ma-
ing aims to improve the generalization performancechines (one-class SVM). The one-class SVM pro-



posed by Scblkopf et al. (2001) is a typical method that do not resemble the majority of the dataset. It
for the problem of novelty or outlier detection, also employes two ideas of the original support vector ma-
known as the one-class classification problem due tehine algorithm to ensure a good generalisation: the
the fact that we do not have sufficient knowledgemaximisation of the margin and the mapping of the
about the outlier class. For example, in the applicadata to a higer dimensional feature space induced by a
tion of fault detection and diagnosis, it is very dif- kernel function. The main difference between the one-
ficult to collect samples corresponding to all the ab-class SVM and the original SVM is that in one-class
normal behaviors of the system. The main advantag8€VM the only given information is the normal sam-
of one-class SVM over other one-class classificatiorples (also called positive samples) of the same sin-
methods (Tarassenko et al. 1995, Ritter and Gallegogle class whereas in the original SVM information on
1997, Eskin 2000, Singh and Markou 2004) is thatboth normal samples and outlier samples (also called
it focuses only on the estimation of a bounded areanegative samples) is given. In essence, the one-class
for samples from the target class rather than on th&VM estimates the boundary region that comprises
estimation of the probability density. The boundedmost of the training samples. If a new test sample falls
area estimation is achieved by separating the targetithin this boundary it is classified as of normal class,
samples (in a higher-dimensional feature space footherwise it is recognised as an outlier.
non-linearly separable cases) from the origin by a Suppose thatd,, = {x;},i = 1,...,m is a set of
maximum-margin hyperplane which is as far awaym training samples of a single class.is a sample
from the origin as possible. in the spaceY C R? of dimensiond. Also suppose
Recently, Yang et al. (2010) proposed to take thdahat ¢ is a non-linear transformation. The one-class
advantages of multi-task learning when conductingSVM is predicated on the assumption that the origin
one-class classification. The basic idea is to constraim the transformed feature space belongs to the neg-
the solutions of related tasks close to each other. Howative or outlier class. The training stage consists in
ever, they solve the problem via conic programmingfirst projecting the training samples to a higher di-
(Kemp et al. 2008), which is complicated. In this mensional feature space and then separating most of
paper, inspired by the work of Evgeniou and Pontilthe samples from the origin by a maximum-margin
(2004), we introduce a very simple multi-task learn-hyperplane which is as far away from the origin as
ing framework based on the one-class SVM methodpossible. In order to determine the maximum-margin
a widely used tool for single task learning. In the hyperplane, we need to deduce its normal veutor
proposed method, we first make the same assumpnd a threshol@ by solving the following optimiza-
tion as in (Evgeniou and Pontil 2004), that is, thetion problem:
model parameter values of different tasks are close
to a certain mean value. This assumption is reasonf minyg, Hwl2+ 25" &G —p 1
able due to the observation that when the tasks arg¢ subjectto: (w,¢(x;)) >p—&, & >0 (1)
similar to each other, usually their model parame-

ters are close enough. Then, a number of one-class are called slack variables, and they are introduced
SVMs, one for each task, are learned simultaneouslyo relax the constraints in some cases for certain train-
Our multi-task approach is easy to implement since iing sample sets. Indeed, the optimization algorithm
only requires a simple modification of the optimiza- aims at finding the best trade-off between the maxi-
tion problem in the single one-class SVM. EXxperi- mization of the margin and the minimization of the
mental results demonstrate the effectiveness of thgyerage of the slack variables. The parametet
proposed approach. (0,1] is a special parameter for one-class SVM. It is
This paper is organized as follows. In Section 2, athe upper-bound of the ratio of outliers among all the
brief description of the formulation of the one-classtraining samples as well as the lower-bound of the ra-
SVM algorithm and the properties of kernel functionstijo of support vectors among all the samples.
is first discussed. The proposed multi-task learning Due to the high dimensionality of the normal vector

method based .OI’I one-class SVM is th.en outlined iﬂN, the prima| prob|em is solved by its Lagrange dual
Section 3. Section 4 presents the experimental resultgroblem :

In Section 5, we conclude this paper with some final

remarks and future work propositions. H.lina % ZZ}:l iy (H(%;), (%)) o
subjectto: 0<a; <=, > ;=1

2 ONE-CLASS SVM AND PROPERTIES OF

KERNELS whereq; are the Lagrange multipliers. It is worth not-
ing that all the mappings occur in the form of in-
21 One-class SVM ner products. We need not to calculate the non-linear

mapping explicitely by defining a simple kernel func-
The one-class SVM proposed by $tkopf et al. tion that fulfills Mercer’s conditions (Vapnik 1995):
(2001) is a promising method for the problem of one-
class classification, which aims at detecting sampleso(x;), ¢(X;)) = k(X;,X;). 3



As an example, the Gaussian kerrigl(x;,x;) = 3.1 Primal problem

lix; —x; 11 . . .
e 222 is a largely used kernel among the com-Following the above assumption, we can generalize
munity. By solving the dual problem with thiernel the one-class SVM method to the problem of multi-

trick, the final decision is given by: task learning. The primal optimization problem can
m be written as follows:
f(x) = sign (Z aik(X;, X) - p> @)
= 1 T 1 T 1 m T
. 2 2
2.2 Properties of kernels woutm 52 Ve "+ 5 lIwol +; (Wz;fit) _;pt
In order to exploit thekernel trick we need to con-
struct valid kernel functions. A necessary and suffi- @
cient condition for a f_unction to be a valid kernel is for gJ1 ; ¢ {1,2,...,m} ett € {1,2,...,T}, subject
defined as follows (Sdikopf and Smola 2001): to:
Definition 2.1 Let X be a nonempty set. A functién
onX’ x X whichforallm e Nandallx,,....x, € X ((Wo+Ve),o(Xie)) = pr— & (8)
gives rise to a positive definite Gram matkx with
elements: e > 0 9)
Kij == k(Xi, X;) (5) where¢;; are the slack variables associated to each

sample and;, € (0, 1] is the special parameter of one-
class SVM for each task. In order to control the simi-
larity between tasks, we introduce a positive regular-
|zation parameter into the primal optimisation prob-
Sem. In particular, a big value ¢f tends to enforce the

is called a positive definite kernel.

One popular way to construct new kernels is to
build them based on simpler kernels. In this section
we briefly gather some results of the properties of th
set of admissible kernels that are useful for designin .
new kernels. For a detailed description concerning th ystem to learn thé tasks independently whereas a

design of kernel functions, interested readers are remrgﬁ”r;]/gléfl ?gﬁ \gl'lntf;?s tkfss% Stﬂe]g] et:(;rll?:rrr:::sgo(r;_a
ferred to (Scblkopf and Smola 2001). :

single one-class SVM, the Lagrangien is formed as:
Proposition 2.1 If k; and k, are kernels, and

oy, ap > 0, thenag ky + asks is a kernel.

Proposition 2.2 If k; and k, are kernels defined re-
spectively ont; x X7 and X, x X5, then their tensor T

T T m
1 o 1
product =5 2 il + S lwol* + > <ytm > §¢t> =
t=1 t=1 i=1 t=1

k1 @ ko (Xq, X2, X7, X5) = k1 (X1, X] ) ko (X2, X5)

L(Wo, Ve, &it, pr, it Bit)

T m T m

is a kernel on(X; x X,) x (X x X,). Herex,, x| € —ZZ%[((WO + Vi) 6 Xit)) = pr + i _Zzﬁitfit
X andxy, X, € X,. ==t ==t
With these properties, we can now construct more (10)
complex kernel functions that are appropriate to our
specific applications in multi-task learning. wherea;,, 3;; > 0 are the Lagrange multipliers. We
set the partial derivatives of the Lagrangian to zero
3 THE PROPOSED METHOD and obtain the following equations:

In this section, we introduce the one-class SVM (a) wo= 123:1 > imy Qird(Xir)

method for the purpose of multi-task learning. In (b) V: Zi‘?il itd(Xit ) (11)
the context of multi-task learning, we hafelearn-  (¢) i = o~ — B

ing tasks on the same spagg with X C R%. For (d) Yrjag=1

each task we have. samples{xy, Xy, - . ., Xt} The o _

objective is to learn a decision function (a hyper-BYy combining the equations (6), (11)(a) and (11)(b),
plane) f,(x) = sign((w,, ¢(x)) — p;) for each task. ~ We have:

Inspired by the method proposed by Evgeniou and T

Pontil (2004), we make the assumption that when thgy, — 1 th (12)
tasks are related to each other, the normal vestor [

can be represented by the sum of a mean veator

and a specific vector, corresponding to each task:

T
1
Wy = —— w 13
W, =W, +V, (6) 0 M+T; ¢ (13)



With these relationships, we may replace the vectorss a linear combination of two valid kernels with posi-
v, andw, by w; in the primal optimisation function tive coefficientsﬁ and1), and therefore is also a valid
(7), which leads to an equivalent function: kernel (Proposition 2.1). We can thus solve the multi-
task learning optimisation problem (7) through a sin-
gle one-class SVM problem by using the new kernel
function G, (X, X;). The decision function for each
task is given by:

2

pype As — 1 &
. 1 2 2}: § :
min ? t:E 1 HWt” + ? Wy — T T:1Wr

Wi &it,pt —1

T 1 m T T m
2 <m 2 f”) 2 49 £(x) = sign (Z 3 i Gry(ir, X) — pt) (21)
r=1 i=1

with

M=——_ and o= —— 15 4 EXPERIMENTAL RESULTS

' p+T ? p+T (15)
We can see that the objective of the primal optimisa-This section presents the experimental results ob-
tion problem (7) in the framework of multi-task learn- tained in our analysis. In order to evaluate the effec-
ing is thus to find a trade-off between the maximisa-tiveness of the proposed multi-task learning frame-
tion of the margin for each one-class SVM model andwork, we compare our one-class SVM based multi-

the closeness of each one-class SVM model to the adask learning method (denoted by MTL-OSVM) with
erage model. two other methods: the traditional learning method

that learns th& tasks independently each with a one-
class SVM (denoted by-OSVM) and the method
that used one-class SVM for all tasks under the as-
The primal optimisation problem (7) can be solvedsumption that all the related tasks can be considered
through its Lagrangian dual problem expressed by: ;¢ gne big task (denoted ByOSVM).
In our experiments, the kernel of the one-class
T T m m SVM used for7-OSVM and 1-OSVM is a Gaus-

1 1
_= P , , lIxi¢ =% ||
- 222;;(”(””) G000 gian kemelky (xax) = 2" For the pro-
’ posed multi-task learning method MTL-OSVM, the

@6) new kernelis thus constructed based on the Gaussian
kernel as presented in equation (20). The optimum

3.2 Dual problem

contrainted to : values for the two parametersando of the one-class
1 i SVM are determined through cross validation. For the
0<ain< Y =1 (17)  sake of simplicity, we have used a common combina-
! =1 tion of their valuegv, o) for all related tasks. In order
whered,, is the Kronecker delta kernel: to ensure the reliability of the performance evaluation,
L ot aI_I the results have been_a_veraged Qetrials each
Opt = { 0’ it (18)  with random draws of training set. As the approaches
’ and comparison are all one-class classification meth-

We can see that the main difference between thieds, the statistics of both false positive and false neg-
dual problem (16) and that in a single one-class SVMative error rates are reported.

learning (2) is the introduced terr(‘% +5rt> in the

multi-task learning framework. Suppose that we de

fine a kernel function as in equation (3): We have firstly tested the poposed method on four
(X, %) = (d(Xit), d(X;0)) (19) (I'=4) related simple nonlinear classification tasks.

The datasets are created according to the following

wherelr a_Pdkt. are (tjhe task indfexhasiociatled t0 eachyans For the first task, each sample is composed of
sample. Taking advantage of the kerne prOpert'ez:zlvariables of which the first three are uniformly

presented in section 2.2, we know that the product ofjqyjpted variables. The fourth variable is set by the
two kernelss, .k (X, X;,-) is a valid kernel (Proposition relation:

2.2). Further, the following function:

1
Grt(Xit, Xjr) = (; + 0t )k (Xit, Xj7) (20)

4.1 Experiment on nonlinear toy data

2@ = 20 9, | (@)

The datasets for the other three tasks are then created
1 by adding Gaussian white noises with different am-
= —k(Xit, Xjr) + Opek (Xit, X)) plitudes on the dataset of the first task. The noises
H are classified respectively as low noise (for Task
with an amplitude of about an order bf; of the first
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Figure 1: The variation of the average (a) false positivefglse negative and (c) total error rates for each task {(neat toy data)
along with the value of the regularization parameter

dataset amplitude value), medium noise (for Task false positive, false negative and total error rates of
with an amplitude of about an order 8f% of the  our multi-task learning method MTL-OSVM for each
first dataset amplitude value) and high noise (for Taskask along with the value of the regularization param-
4, with an amplitude of about an order ®$% of eteru. The error rates df'-OSVM and1-OSVM are

the first dataset amplitude value). In order to evalu-also presented. We can see that for a very small value
ate the false positive error rates, we have generatedd 1, the performance of MTL-OSVM coincides with
set of negative samples that are composed ef4  that of1-OSVM as if all the tasks were considered as
uniformly distributed variables. Therefore, the train-the same task. When the value,ofs very large, the

ing set of each task contains only positive sampleperformance of MTL-OSVM is in accordance with
(m = 200) whereas in the test procedure we use thehat of the traditional independant learning mettiéd
test set of sizd00 that contains both positive and neg- OSVM. With the increase of the value pfthe behav-
ative samples200 samples for each class). The ob-iors of the first three tasks are similar. The false posi-
tained optimum parameter values of one-class SVMive error rate of the MTL-OSVM method tends to de-
are(v,0) = (0.01,0.5) for this experiment. crease whereas its false negative error rate increases.

. . L However, for the fourth task, the false positive (false
Figure 1 illustrates the variation of the average



negative) error rate firstincreases (decreases) and thé@ble 1: Error rates%) of the different methods for all tasks

decreases (increases) after it reaches the maximufy texture data. FP: false positive error rates, FN: falgminae
error rates, Total: total error rates.

(minimum) value. This behavior may be due to the Task1
very high noise that we added to the original dataset. — EN Total
In all, with a good choice ofi, the multi-task frame- T-OSYM 3625118 270L30 153L14 K

work achieves a better performance in terms of the 1.osvm 271426 2704159 149415 —
total error rate when compared to the traditional learn- MTL-OSVM  14.442.2 9.52+3.19 12.0+18 0.1

ing methods. Task2
FP FN Total "
) . T-OSVM 427+ 1.11 282+36 163+16 —
4.2 Experiment on textured image data 1-OSVM 271426 327+221 152+18 —
MTL-OSVM  14.6+2.2 10.3+3.7 12.4+20 0.1

We have tested the proposed method on several tex= Task3

tured gray-scale images that contain artificial textures Fp EN Total B
generated by using Markov chain models (Smolarz—7r-gsym 70551741 28639 178 %20
1997). According to the nature of a texture, we first 1-osvMm 27.142.6 6.62+3.73 168422 —
suppose that the useful information for texture carac- MTL-OSVM  15.7+2.3  144+4.1 15.0£22 0.1
terization is included in an isotropic neighbourhood Task4

of each pixel. In our experiments we use then the gray FP FN Total I
levels of a locall = 5 x 5 squared window centered {883\\//"\\/'/' g;‘lli 525-2 gj-éig-; gg-gii-g -

to each pixel as its feature vector. Similar to the pre- =~ e : : - 0
vious experiment in Section 4.1, four related tasks argMTL-OSVM_ 29.4£26  29.049.2 29.2+45 05
created. The dataset for Taskcontains samples of "

sized = 5 x 5 = 25 that are selected randomly from off be_tween the false positive error rate and the false
the original single texture source image. The sample§€dative error rate. _ _ _

for the other three tasks are selected from textured im- | he average results of this experiment are depicted
ages of the same source as Taskut contaminated N Figure 3. As in the previous experiment on the non-
respectively by low noise (Task), medium noise linear toy data, we can_observe the.same behaviors
(Task 3) and high noise (Task). Negative samples of the error rates variations along with the value of
used in the test set are generated by using a differe§f€ regularization parameter The proposed method
single texture source image. Figure 2 illustrates thd1TL-OSVM outperforms the other two methods
single texture source images used for generating th@SVM and1-OSVM) for all the tasks. It is worth not-
datasets. In each trial, the training set of each task contd that the optimum value ai is different for dif-
tainsm = 200 positive samples and the test set is com-ferent task. The setting of this parameter is thus very
posed o200 positive ancd200 negative samples. The important in order to ensure a good perfo_rmance. In
common parameter values of one-class SVM used iQUr experiment we use a validation set to find the op-
this experiment arév, o) = (0.01, 300). timum value ofy.

4.3 Discussion

It is worth noting that in this section only academic
Lt PR experiments on nonlinear toy data with low dimen-
@ ®) © @ © stional feature space and textured image data with
e el osrn matoeor Tao T e igh dimentional feature space are presented. We ad-
age of (a) with Ic?w noise, for Tasigi (c) Texture image of (a) dress the problem of modeling the norr.nal .data with
with medium noise, for TasR. (d) Texture image of (a) with th€ help of one-class SVM method, which is usually
high noise, for TasK. (e) Original texture image for generating considered as an essential step for fault dectection and
negative samples. diagnosis. In each experiment, related tasks are cre-
ated in order to mimic the application of modeling
Table 1 shows the statistics of the obtained erthe normal process behavior of a fleet of plants that
ror rates. The corresponding optimum valueudr  are a priori identical but working under different con-
MTL-OSVM, which minimises the total error rate, is ditions (thus having different noises on the measure-
also presented. According to this table, we can se&ents). Here we consider the modeling of the behav-
that the individual learning methdB-OSVM has the ior of each plant as a single task and the classifica-
lowest false positive but a higher false negative. Ortion of normal data and anomalies is then performed
the contrary, the learning of a single one-class SVMby the constructed model. The proposed methodolo-
for all tasks {-OSVM) achieves the lowest false neg- gie shows that learning multiple related tasks simulta-
ative at the expense of a higher false positive. The proreously can be beneficial to improve the performance
posed multi-task learning method MTL-OSVM can of each constructed model.
reach an overall better performance by finding atrade- One straightforward work is to use the proposed
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Figure 3: The variation of the average (a) false positivefglse negative and (c) total error rates for each taskytextiata) along
with the value of the regularization parameter

multi-task learning methodologie for fault detection ness of each one-class SVM model to the average
and diagnosis with real industrial data, such as thenodel. The design of new kernels in the multi-task
modeling of the behavior of a fleet of reactor coolantframework based on kernel properties significantly
pumps in the nuclear cooling system. facilites the implementation of our method. Experi-
mental validation was made on artificially generated
related tasks of one-class classification. The results
5 CONCLUSION show that learning multiple related tasks simultane-
ously can achieve a better performance than learning
In this paper we introduced the one-class SVM ineach task independantly.
the framework of multi-task learning under the as-
sumption that the model parameter values of related In our method we have used a common setting of
tasks are close to a certain mean value. A regularizaboth one-class SVM parameter and kernel parameter
tion parameter was used in the optimisation process tealues. One future work is thus to use different pa-
control the trade-off between the maximisation of therameter values for different tasks. The properties of
margin for each one-class SVM model and the closekernels open a wide range of further developpements
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