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2, avenue de la forêt de Haye, 54500 Vandœuvre-lès-Nancy, France

Pierre Beauseroy & André Smolarz
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ABSTRACT: Multi-Task Learning (MTL) has become an active research topic in recent years. While most
machine learning methods focus on the learning of tasks independently, multi-task learning aims to improve
the generalization performance by training multiple related tasks simultaneously. This paper presents a new
approach to multi-task learning based on one-class SupportVector Machine (one-class SVM). In the proposed
approach, we first make the assumption that the model parameter values of different tasks are close to a certain
mean value. Then, a number of one-class SVMs, one for each task, are learned simultaneously. Our multi-task
approach is easy to implement since it only requires a simplemodification of the optimization problem in the
single one-class SVM. Experimental results demonstrate the effectiveness of the proposed approach.

1 INTRODUCTION

Classical machine learning technologies have
achieved much success in the learning of a single task
at a time. However, in many practical applications
we may need to learn a number of related tasks or
to rebuild the model from new data, for example,
in the problem of fault detection and diagnosis of
a system that contains a set of equipmentsa priori
identical but working under different conditions.
Here “an equipment” may be a simple machine (a
pump, a motor, ...), a system (a car, an airplane, ...),
or even an industrial plant (nuclear power plant, ...).
This may be the case for a car hire system where we
have a fleet of vehicles to serve a set of customers.
In industry, it is common to encounter a number of
a priori identical plants, such as in the building or
maintenance of a fleet of nuclear power plants or of a
fleet of their components. In such cases, the learning
of the behavior of each equipment can be considered
as a single task, and it would be nice to transfer
or leverage the useful information between related
tasks (Pan and Yang 2010). Therefore, Multi-Task
Learning (MTL) has become an active research topic
in recent years (Bi et al. 2008, Zheng et al. 2008, Gu
and Zhou 2009, Birlutiu et al. 2010).

While most machine learning methods focus on
the learning of tasks independently, multi-task learn-
ing aims to improve the generalization performance

by training multiple related tasks simultaneously. The
main idea is to share what is learned from different
tasks (e.g., a common representation space or some
model parameters that are close to each other), while
tasks are trained in parallel (Caruana 1997). Previous
works have shown empirically as well as theoretically
that the multi-task learning framework can lead to
more intelligent learning models with a better perfor-
mance (Caruana 1997, Heskes 2000, Ben-David and
Schuller 2003, Evgeniou et al. 2005, Ben-David and
Borbely 2008).

In recent years, Support Vector Machines (SVM)
(Boser et al. 1992, Vapnik 1995) have been success-
fully used for multi-task learning (Evgeniou and Pon-
til 2004, Jebara 2004, Evgeniou et al. 2005, Widmer
et al. 2010, Yang et al. 2010). The SVM method was
initially developped for the classification of data from
two different classes by a hyperplane that has the
largest distance to the nearest training data points of
any class (maximum margin). When the datasets are
not linearly separable, the “kernel trick” is used. The
basic idea is to map the original data to a higher di-
mensional feature space and then solve a linear prob-
lem in that space. The good properties of kernel func-
tions make support vector machines well-suited for
multi-task learning.

In this paper, we present a new approach to multi-
task learning based on one-class Support Vector Ma-
chines (one-class SVM). The one-class SVM pro-



posed by Scḧolkopf et al. (2001) is a typical method
for the problem of novelty or outlier detection, also
known as the one-class classification problem due to
the fact that we do not have sufficient knowledge
about the outlier class. For example, in the applica-
tion of fault detection and diagnosis, it is very dif-
ficult to collect samples corresponding to all the ab-
normal behaviors of the system. The main advantage
of one-class SVM over other one-class classification
methods (Tarassenko et al. 1995, Ritter and Gallegos
1997, Eskin 2000, Singh and Markou 2004) is that
it focuses only on the estimation of a bounded area
for samples from the target class rather than on the
estimation of the probability density. The bounded
area estimation is achieved by separating the target
samples (in a higher-dimensional feature space for
non-linearly separable cases) from the origin by a
maximum-margin hyperplane which is as far away
from the origin as possible.

Recently, Yang et al. (2010) proposed to take the
advantages of multi-task learning when conducting
one-class classification. The basic idea is to constrain
the solutions of related tasks close to each other. How-
ever, they solve the problem via conic programming
(Kemp et al. 2008), which is complicated. In this
paper, inspired by the work of Evgeniou and Pontil
(2004), we introduce a very simple multi-task learn-
ing framework based on the one-class SVM method,
a widely used tool for single task learning. In the
proposed method, we first make the same assump-
tion as in (Evgeniou and Pontil 2004), that is, the
model parameter values of different tasks are close
to a certain mean value. This assumption is reason-
able due to the observation that when the tasks are
similar to each other, usually their model parame-
ters are close enough. Then, a number of one-class
SVMs, one for each task, are learned simultaneously.
Our multi-task approach is easy to implement since it
only requires a simple modification of the optimiza-
tion problem in the single one-class SVM. Experi-
mental results demonstrate the effectiveness of the
proposed approach.

This paper is organized as follows. In Section 2, a
brief description of the formulation of the one-class
SVM algorithm and the properties of kernel functions
is first discussed. The proposed multi-task learning
method based on one-class SVM is then outlined in
Section 3. Section 4 presents the experimental results.
In Section 5, we conclude this paper with some final
remarks and future work propositions.

2 ONE-CLASS SVM AND PROPERTIES OF
KERNELS

2.1 One-class SVM

The one-class SVM proposed by Schölkopf et al.
(2001) is a promising method for the problem of one-
class classification, which aims at detecting samples

that do not resemble the majority of the dataset. It
employes two ideas of the original support vector ma-
chine algorithm to ensure a good generalisation: the
maximisation of the margin and the mapping of the
data to a higer dimensional feature space induced by a
kernel function. The main difference between the one-
class SVM and the original SVM is that in one-class
SVM the only given information is the normal sam-
ples (also called positive samples) of the same sin-
gle class whereas in the original SVM information on
both normal samples and outlier samples (also called
negative samples) is given. In essence, the one-class
SVM estimates the boundary region that comprises
most of the training samples. If a new test sample falls
within this boundary it is classified as of normal class,
otherwise it is recognised as an outlier.

Suppose thatAm = {xi}, i = 1, . . . ,m is a set of
m training samples of a single class.xi is a sample
in the spaceX ⊆ R

d of dimensiond. Also suppose
that φ is a non-linear transformation. The one-class
SVM is predicated on the assumption that the origin
in the transformed feature space belongs to the neg-
ative or outlier class. The training stage consists in
first projecting the training samples to a higher di-
mensional feature space and then separating most of
the samples from the origin by a maximum-margin
hyperplane which is as far away from the origin as
possible. In order to determine the maximum-margin
hyperplane, we need to deduce its normal vectorw
and a thresholdρ by solving the following optimiza-
tion problem:

{

minw,ξ,ρ
1
2
‖w‖2 + 1

νm

∑m

i=1 ξi − ρ
subject to: 〈w, φ(xi)〉 ≥ ρ− ξi, ξi ≥ 0

(1)

ξi are called slack variables, and they are introduced
to relax the constraints in some cases for certain train-
ing sample sets. Indeed, the optimization algorithm
aims at finding the best trade-off between the maxi-
mization of the margin and the minimization of the
average of the slack variables. The parameterν ∈
(0,1] is a special parameter for one-class SVM. It is
the upper-bound of the ratio of outliers among all the
training samples as well as the lower-bound of the ra-
tio of support vectors among all the samples.

Due to the high dimensionality of the normal vector
w, the primal problem is solved by its Lagrange dual
problem :

{

minα
1
2

∑m

i,j=1 αiαj 〈φ(xi), φ(xj)〉
subject to: 0 ≤ αi ≤

1
νm

,
∑m

i=1 αi = 1
(2)

whereαi are the Lagrange multipliers. It is worth not-
ing that all the mappingsφ occur in the form of in-
ner products. We need not to calculate the non-linear
mapping explicitely by defining a simple kernel func-
tion that fulfills Mercer’s conditions (Vapnik 1995):

〈φ(xi), φ(xj)〉 = k(xi,xj). (3)



As an example, the Gaussian kernelkσ(xi,xj) =

e−
‖xi−xj‖

2

2σ2 is a largely used kernel among the com-
munity. By solving the dual problem with thiskernel
trick, the final decision is given by:

f(x) = sign

(

m
∑

i=1

αik(xi,x)− ρ

)

(4)

2.2 Properties of kernels

In order to exploit thekernel trick, we need to con-
struct valid kernel functions. A necessary and suffi-
cient condition for a function to be a valid kernel is
defined as follows (Scḧolkopf and Smola 2001):

Definition 2.1 LetX be a nonempty set. A functionk
onX ×X which for allm ∈ N and allx1, . . . ,xm ∈ X
gives rise to a positive definite Gram matrixK, with
elements:

Kij := k(xi,xj) (5)

is called a positive definite kernel.
One popular way to construct new kernels is to

build them based on simpler kernels. In this section,
we briefly gather some results of the properties of the
set of admissible kernels that are useful for designing
new kernels. For a detailed description concerning the
design of kernel functions, interested readers are re-
ferred to (Scḧolkopf and Smola 2001).

Proposition 2.1 If k1 and k2 are kernels, and
α1, α2 ≥ 0, thenα1k1 + α2k2 is a kernel.

Proposition 2.2 If k1 and k2 are kernels defined re-
spectively onX1 ×X1 andX2 ×X2, then their tensor
product

k1 ⊗ k2(x1,x2,x′

1,x′

2) = k1(x1,x′

1)k2(x2,x′

2)

is a kernel on(X1 ×X2) × (X1 ×X2). Herex1,x′

1 ∈
X1 andx2,x′

2 ∈ X2.
With these properties, we can now construct more

complex kernel functions that are appropriate to our
specific applications in multi-task learning.

3 THE PROPOSED METHOD

In this section, we introduce the one-class SVM
method for the purpose of multi-task learning. In
the context of multi-task learning, we haveT learn-
ing tasks on the same spaceX , with X ⊆ R

d. For
each task we havem samples{x1t,x2t, . . . ,xmt}. The
objective is to learn a decision function (a hyper-
plane)ft(x) = sign(〈wt, φ(x)〉 − ρt) for each taskt.
Inspired by the method proposed by Evgeniou and
Pontil (2004), we make the assumption that when the
tasks are related to each other, the normal vectorwt

can be represented by the sum of a mean vectorw0

and a specific vectorvt corresponding to each task:

wt = w0 + vt (6)

3.1 Primal problem

Following the above assumption, we can generalize
the one-class SVM method to the problem of multi-
task learning. The primal optimization problem can
be written as follows:

min
w0,vt,ξit,ρt

1

2

T
∑

t=1

‖vt‖
2 +

µ

2
‖w0‖

2 +

T
∑

t=1

(

1

νtm

m
∑

i=1

ξit

)

−

T
∑

t=1

ρt

(7)

for all i ∈ {1,2, . . . ,m} et t ∈ {1,2, . . . , T}, subject
to:

〈(w0 + vt), φ(xit)〉 ≥ ρt − ξit (8)

ξit ≥ 0 (9)

whereξit are the slack variables associated to each
sample andνt ∈ (0,1] is the special parameter of one-
class SVM for each task. In order to control the simi-
larity between tasks, we introduce a positive regular-
ization parameterµ into the primal optimisation prob-
lem. In particular, a big value ofµ tends to enforce the
system to learn theT tasks independently whereas a
small value ofµ will lead the system to learn a com-
mon model for all tasks. As in the earlier case of a
single one-class SVM, the Lagrangien is formed as:

L(w0,vt, ξit, ρt, αit, βit)

=
1

2

T
∑

t=1

‖vt‖
2 +

µ

2
‖w0‖

2 +
T
∑

t=1

(

1

νtm

m
∑

i=1

ξit

)

−
T
∑

t=1

ρt

−

T
∑

t=1

m
∑

i=1

αit[〈(w0 + vt), φ(xit)〉 − ρt + ξit]−

T
∑

t=1

m
∑

i=1

βitξit

(10)

whereαit, βit ≥ 0 are the Lagrange multipliers. We
set the partial derivatives of the Lagrangian to zero
and obtain the following equations:

(a) w0 = 1
µ

∑T

t=1

∑m

i=1 αitφ(xit)
(b) vt =

∑m

i=1 αitφ(xit)
(c) αit = 1

νtm
− βit

(d)
∑m

i=1 αit = 1

(11)

By combining the equations (6), (11)(a) and (11)(b),
we have:

w0 =
1

µ

T
∑

t=1

vt (12)

w0 =
1

µ + T

T
∑

t=1

wt (13)



With these relationships, we may replace the vectors
vt andw0 by wt in the primal optimisation function
(7), which leads to an equivalent function:

min
wt,ξit,ρt

λ1

2

T
∑

t=1

‖wt‖
2 +

λ2

2

T
∑

t=1

∥

∥

∥

∥

∥

wt −
1

T

T
∑

r=1

wr

∥

∥

∥

∥

∥

2

+

T
∑

t=1

(

1

νtm

m
∑

i=1

ξit

)

−

T
∑

t=1

ρt (14)

with

λ1 =
µ

µ + T
and λ2 =

T

µ + T
(15)

We can see that the objective of the primal optimisa-
tion problem (7) in the framework of multi-task learn-
ing is thus to find a trade-off between the maximisa-
tion of the margin for each one-class SVM model and
the closeness of each one-class SVM model to the av-
erage model.

3.2 Dual problem

The primal optimisation problem (7) can be solved
through its Lagrangian dual problem expressed by:

max
αit

−
1

2

T
∑

t=1

T
∑

r=1

m
∑

i=1

m
∑

j=1

αitαjr

(

1

µ
+ δrt

)

〈φ(xit), φ(xjr)〉

(16)

contrainted to :

0 ≤ αit ≤
1

νtm
,

m
∑

i=1

αit = 1 (17)

whereδrt is the Kronecker delta kernel:

δrt =

{

1, if r = t
0, if r 6= t

(18)

We can see that the main difference between this
dual problem (16) and that in a single one-class SVM

learning (2) is the introduced term
(

1
µ

+ δrt

)

in the

multi-task learning framework. Suppose that we de-
fine a kernel function as in equation (3):

k(xit,xjr) = 〈φ(xit), φ(xjr)〉 (19)

wherer and t are the task index associated to each
sample. Taking advantage of the kernel properties
presented in section 2.2, we know that the product of
two kernelsδrtk(xit,xjr) is a valid kernel (Proposition
2.2). Further, the following function:

Grt(xit,xjr) = (
1

µ
+ δrt)k(xit,xjr) (20)

=
1

µ
k(xit,xjr) + δrtk(xit,xjr)

is a linear combination of two valid kernels with posi-
tive coefficients (1

µ
and1), and therefore is also a valid

kernel (Proposition 2.1). We can thus solve the multi-
task learning optimisation problem (7) through a sin-
gle one-class SVM problem by using the new kernel
functionGrt(xit,xjr). The decision function for each
task is given by:

ft(x) = sign

(

T
∑

r=1

m
∑

i=1

αirGrt(xir,x)− ρt

)

(21)

4 EXPERIMENTAL RESULTS

This section presents the experimental results ob-
tained in our analysis. In order to evaluate the effec-
tiveness of the proposed multi-task learning frame-
work, we compare our one-class SVM based multi-
task learning method (denoted by MTL-OSVM) with
two other methods: the traditional learning method
that learns theT tasks independently each with a one-
class SVM (denoted byT -OSVM) and the method
that uses1 one-class SVM for all tasks under the as-
sumption that all the related tasks can be considered
as one big task (denoted by1-OSVM).

In our experiments, the kernel of the one-class
SVM used forT -OSVM and 1-OSVM is a Gaus-

sian kernelkσ(xit,xjr) = e−
‖xit−xjr‖

2

2σ2 . For the pro-
posed multi-task learning method MTL-OSVM, the
new kernel is thus constructed based on the Gaussian
kernel as presented in equation (20). The optimum
values for the two parametersν andσ of the one-class
SVM are determined through cross validation. For the
sake of simplicity, we have used a common combina-
tion of their values(ν,σ) for all related tasks. In order
to ensure the reliability of the performance evaluation,
all the results have been averaged over20 trials each
with random draws of training set. As the approaches
and comparison are all one-class classification meth-
ods, the statistics of both false positive and false neg-
ative error rates are reported.

4.1 Experiment on nonlinear toy data

We have firstly tested the poposed method on four
(T = 4) related simple nonlinear classification tasks.
The datasets are created according to the following
steps. For the first task, each sample is composed of
d = 4 variables of which the first three are uniformly
distributed variables. The fourth variable is set by the
relation:

x(4) = x(1) + 2x(2) + (x(3))2

The datasets for the other three tasks are then created
by adding Gaussian white noises with different am-
plitudes on the dataset of the first task. The noises
are classified respectively as low noise (for Task2,
with an amplitude of about an order of1% of the first



Figure 1: The variation of the average (a) false positive, (b) false negative and (c) total error rates for each task (nonlinear toy data)
along with the value of the regularization parameterµ.

dataset amplitude value), medium noise (for Task3,
with an amplitude of about an order of8% of the
first dataset amplitude value) and high noise (for Task
4, with an amplitude of about an order of15% of
the first dataset amplitude value). In order to evalu-
ate the false positive error rates, we have generated a
set of negative samples that are composed ofd = 4
uniformly distributed variables. Therefore, the train-
ing set of each task contains only positive samples
(m = 200) whereas in the test procedure we use the
test set of size400 that contains both positive and neg-
ative samples (200 samples for each class). The ob-
tained optimum parameter values of one-class SVM
are(ν,σ) = (0.01,0.5) for this experiment.

Figure 1 illustrates the variation of the average

false positive, false negative and total error rates of
our multi-task learning method MTL-OSVM for each
task along with the value of the regularization param-
eterµ. The error rates ofT -OSVM and1-OSVM are
also presented. We can see that for a very small value
of µ, the performance of MTL-OSVM coincides with
that of1-OSVM as if all the tasks were considered as
the same task. When the value ofµ is very large, the
performance of MTL-OSVM is in accordance with
that of the traditional independant learning methodT -
OSVM. With the increase of the value ofµ, the behav-
iors of the first three tasks are similar. The false posi-
tive error rate of the MTL-OSVM method tends to de-
crease whereas its false negative error rate increases.
However, for the fourth task, the false positive (false



negative) error rate first increases (decreases) and then
decreases (increases) after it reaches the maximum
(minimum) value. This behavior may be due to the
very high noise that we added to the original dataset.
In all, with a good choice ofµ, the multi-task frame-
work achieves a better performance in terms of the
total error rate when compared to the traditional learn-
ing methods.

4.2 Experiment on textured image data

We have tested the proposed method on several tex-
tured gray-scale images that contain artificial textures
generated by using Markov chain models (Smolarz
1997). According to the nature of a texture, we first
suppose that the useful information for texture carac-
terization is included in an isotropic neighbourhood
of each pixel. In our experiments we use then the gray
levels of a locald = 5 × 5 squared window centered
to each pixel as its feature vector. Similar to the pre-
vious experiment in Section 4.1, four related tasks are
created. The dataset for Task1 contains samples of
sized = 5 × 5 = 25 that are selected randomly from
the original single texture source image. The samples
for the other three tasks are selected from textured im-
ages of the same source as Task1, but contaminated
respectively by low noise (Task2), medium noise
(Task3) and high noise (Task4). Negative samples
used in the test set are generated by using a different
single texture source image. Figure 2 illustrates the
single texture source images used for generating the
datasets. In each trial, the training set of each task con-
tainsm = 200 positive samples and the test set is com-
posed of200 positive and200 negative samples. The
common parameter values of one-class SVM used in
this experiment are(ν,σ) = (0.01,300).

Figure 2: Single texture source images used for generating the
datasets. (a) Original texture image for Task1. (b) Texture im-
age of (a) with low noise, for Task2. (c) Texture image of (a)
with medium noise, for Task3. (d) Texture image of (a) with
high noise, for Task4. (e) Original texture image for generating
negative samples.

Table 1 shows the statistics of the obtained er-
ror rates. The corresponding optimum value ofµ for
MTL-OSVM, which minimises the total error rate, is
also presented. According to this table, we can see
that the individual learning methodT -OSVM has the
lowest false positive but a higher false negative. On
the contrary, the learning of a single one-class SVM
for all tasks (1-OSVM) achieves the lowest false neg-
ative at the expense of a higher false positive. The pro-
posed multi-task learning method MTL-OSVM can
reach an overall better performance by finding a trade-

Table 1: Error rates (%) of the different methods for all tasks
on texture data. FP: false positive error rates, FN: false negative
error rates, Total: total error rates.

Task1

FP FN Total µ
T -OSVM 3.62± 1.18 27.0± 3.0 15.3± 1.4 −
1-OSVM 27.1± 2.6 2.70± 1.59 14.9± 1.5 −

MTL-OSVM 14.4± 2.2 9.52± 3.19 12.0± 1.8 0.1
Task2

FP FN Total µ
T -OSVM 4.27± 1.11 28.2± 3.6 16.3± 1.6 −
1-OSVM 27.1± 2.6 3.27± 2.21 15.2± 1.8 −

MTL-OSVM 14.6± 2.2 10.3± 3.7 12.4± 2.0 0.1
Task3

FP FN Total µ
T -OSVM 7.05± 1.41 28.6± 3.9 17.8± 2.0 −
1-OSVM 27.1± 2.6 6.62± 3.73 16.8± 2.2 −

MTL-OSVM 15.7± 2.3 14.4± 4.1 15.0± 2.2 0.1
Task4

FP FN Total µ
T -OSVM 27.4± 3.0 34.4± 8.7 30.9± 4.5 −
1-OSVM 27.1± 2.6 34.0± 8.7 30.5± 4.5 −

MTL-OSVM 29.4± 2.6 29.0± 9.2 29.2± 4.5 0.5

off between the false positive error rate and the false
negative error rate.

The average results of this experiment are depicted
in Figure 3. As in the previous experiment on the non-
linear toy data, we can observe the same behaviors
of the error rates variations along with the value of
the regularization parameterµ. The proposed method
MTL-OSVM outperforms the other two methods (T -
OSVM and1-OSVM) for all the tasks. It is worth not-
ing that the optimum value ofµ is different for dif-
ferent task. The setting of this parameter is thus very
important in order to ensure a good performance. In
our experiment we use a validation set to find the op-
timum value ofµ.

4.3 Discussion

It is worth noting that in this section only academic
experiments on nonlinear toy data with low dimen-
stional feature space and textured image data with
high dimentional feature space are presented. We ad-
dress the problem of modeling the normal data with
the help of one-class SVM method, which is usually
considered as an essential step for fault dectection and
diagnosis. In each experiment, related tasks are cre-
ated in order to mimic the application of modeling
the normal process behavior of a fleet of plants that
are a priori identical but working under different con-
ditions (thus having different noises on the measure-
ments). Here we consider the modeling of the behav-
ior of each plant as a single task and the classifica-
tion of normal data and anomalies is then performed
by the constructed model. The proposed methodolo-
gie shows that learning multiple related tasks simulta-
neously can be beneficial to improve the performance
of each constructed model.

One straightforward work is to use the proposed



Figure 3: The variation of the average (a) false positive, (b) false negative and (c) total error rates for each task (texture data) along
with the value of the regularization parameterµ.

multi-task learning methodologie for fault detection
and diagnosis with real industrial data, such as the
modeling of the behavior of a fleet of reactor coolant
pumps in the nuclear cooling system.

5 CONCLUSION

In this paper we introduced the one-class SVM in
the framework of multi-task learning under the as-
sumption that the model parameter values of related
tasks are close to a certain mean value. A regulariza-
tion parameter was used in the optimisation process to
control the trade-off between the maximisation of the
margin for each one-class SVM model and the close-

ness of each one-class SVM model to the average
model. The design of new kernels in the multi-task
framework based on kernel properties significantly
facilites the implementation of our method. Experi-
mental validation was made on artificially generated
related tasks of one-class classification. The results
show that learning multiple related tasks simultane-
ously can achieve a better performance than learning
each task independantly.

In our method we have used a common setting of
both one-class SVM parameter and kernel parameter
values. One future work is thus to use different pa-
rameter values for different tasks. The properties of
kernels open a wide range of further developpements



on constructing new kernels for multi-task learning.
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