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Abstract 

This paper discusses conditions on stability and 
stabilization of continuous T-S fuzzy systems. Stability 
analysis is derived via non-quadratic Lyapunov function 
technique and LMIs (Linear Matrix Inequalities) 
lbrmulation to obtain an efficient solution. The non- 
quadratic Lyapunov function is built by inference of 
quadratic Lyapunov function of each local model. We show 
that stability condition of the open-loop T-S systems is 
assured under certain restrictions on the rate of change of 
state variables. Following a similar approach, stabilization 
of the closed-loop continuous T-S fuzzy systems using the 
well-known PDC (Parallel Distributed Compensation) 
technique is investigated. The design methodology is 
illustrated by numerical examples. 

1 Introduction 

Since last years many works have been focused on the 
stability and the stabilisation of closed loop fuzzy systems 
including a fuzzy controller. Specially, the approach using 
T-S fuzzy models [5], considered like a universal 
approximator [8], has been considered extensively. The T- 
S fuzzy models are described by a set of fuzzy "If ... then" 
rules with fuzzy sets in the antecedents and dynamics LTI 
systems in the consequent. These sub-models are 
considered as local linear models, the aggregation of which 
representing the nonlinear system behaviour. 
The issue of stability and stabilisation of T-S fuzzy control 
systems has been considered extensively in nonlinear 
frameworks. However, the present results are only 
sufficient and require conservative assumptions. For 
example, Tanaka and Sugeno presented sufficient 
conditions for the stability of T-S models [6] using a 
quadratic Lyapunov approach. The stability depends on the 
existence of a common positive definite matrix guarantying 
the stability of all local subsystems. These stability 
conditions may be expressed in linear matrix inequalities 
(LMIs) form [10]. The obtaining of a solution is then 
facilitate by using numerical toolboxes for solving such 
problems. Recently LMI constraint has been added to 
compute a decay rate and to guarantee that the control law 
action doesn't permit an exceeding of a pre-defined norm- 
bound of input and output signals [2][11 ]. However, if the 
number of sub-models is large, it might be difficult to find a 

common matrix. Moreover, these constraints are often very 
conservative and it's well known that, in a lot of cases, a 
common positive definite matrix does not exist, whereas the 
system is stable. 
To overcome this limitation, some works have been 
developed in order to establish new stability conditions by 
relaxing some of the previous constraints. So one way tbr 
obtaining relaxed stability conditions consists to use a 
piecewise quadratic Lyapunov function formulated as a set 
of LMIs [3]. Using the PI fuzzy controller and the 
Lyapunov technique, the authors in [13] show that 
asymptotic stability of the Takagi-Sugeno fuzzy systems 
can be ensured under certain restriction on the control 
signal and the rate of change of the output. Jadbabaie in [ 1 ] 
introduces T-S fuzzy rules that describe the Lyapunov 
function where each T-S rule has fuzzy sets in the 
antecedents and quadratic Lyapunov function in the 
consequent. The global Lyapunov function is state 
dependant. This method requires fixing a priori bound on 
the variation of the state, to prove the stability of the T-S 
fuzzy systems [1 ]. The major disadvantage of this approach 
is the fact that a systematic way to pick the bound of state 
variable vector has not been derived. The author only 
proposes to pick initial large number for this bound and 
then iteratively reducing this value by a trial and error 
method. 
The goal of this paper is double. Using the non-quadratic 
Lyapunov function, we will derive sufficient condition for 
stability and also stabilisation of the continuous T-S fuzzy 
system. 
This paper is organised as follows: section 2 presents an 
overview of T-S fuzzy systems. In section 3 we recall the 
LMI formulation of basic quadratic stability conditions. In 
section 4, first a fuzzy Lyapunov function is built by 
inference of the quadratic Lyapunov functions designed lor 
each local model. We also develop a new proposition to 
take into account a finite number of rules activated in each 
time for less of conservatism. At last, using the LMI 
technique for efficient way of resolution, we develop a 
method to estimate an upper bound of the variation of the 
state to prove the stability of T-S continuous fuzzy systems. 
In section 5, using the concept of PDC to perform control 
laws and LMIs formulation, similar approach is used lor the 
stabilization of T-S fuzzy closed loop system. In both cases 
numerical examples are given to illustrate the effectiveness 
of the proposed stability conditions. 
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2 Takagi-Sugeno fuzzy systems 

The T-S fuzzy models are described by a set of fuzzy 
"if.. .then" rules with fuzzy sets in the antecedents and 
dynamic LTI systems in the consequent. These sub-systems 
represent local linear input-output relations of a nonlinear 
systems. A general T-S plant rule can be written as Ibllows: 

i th rule : 

IF x, (t)is ~ and .... x (t) is  F~ THEN 2(t) = Ax( t )+  B~u(t) 

Where n is the number of rules (sub-models), x(t) ~ 91 e is 

the state vector, y(t) ~ 91 ~ is the output vector, u(t) ~ 9l "~ is 

the input vector, A i ~ 9V 'xp , B i ~ 9l r~" . 

The global T-S fuzzy systems is inferred as lbllows: 

n 

Z o o  (x(t))(Aix(t) + B,u(t)) 

Jr(t)= '=' 
n 

~_y, (x(t)) 
i=1 

n 

where % (x(t)) = H fj~ (xj (t)) 
j = l  

and f / ( x / ( t ) )  

fuzzy set F ' .  
I 

(1) 

is the membership grade of xj( t )  to the 

Finally we define: 

p~ (x(t)) = % (x(t)) (2) 
n 

~_jo ~ (x(t)) 
i=1 

p~ (x(t))is the normalised membership function in relation 

with the i t~ sub-system such that: 

I ~,,, p, (x(t)) = 1 
= 

L0 </1, (x(t)) < 1 V i : l . . n  

(3) 

Equation (1) can be rewriten as: 

5c(t) = 2 I.t~ (x(t))(Aix(t)  + B,u(t)) (4) 
i=1 

It is assumed in this paper that the membership functions 
depend only on the state of the system and that only r locals 
models are activated for a given x(t) (the another (n-r) local 
models are ignored). 

The minimum and maximum eigenvalues of the matrix X 
will be respectively denoted by ~,~(X) and A. M ( X ) .  

3 Bas i c  s tabi l i ty  c o n d i t i o n s  

The open-loop T-S system of (4) is defined as: 

n 

2(t) = E I.t~ (x(t))A,x(t)  (5) 
i=1 

Let us recall first the basic stability conditions of the open- 
loop system (5) derived using quadratic Lyapunov function. 

Theorem[6]: The continuous fuzzy system described by (5) 
is globally asymptotically stable if there exists a 

common P = pr  > 0 such that: 

ArP+PA,, < 0  V i ' l . . n  (6) 
[] 

The existence of such a common positive definite matrix 
described by LMIs (6) is a key to check the global stability 
of T-S continuous fuzzy system. 

The authors in [12] propose an analytic way to finding a 
common P in the particular case where the matrices A~ are 
asymptotically stable and commute pairwise. 

Theorem[12]: For a given positive definite matrix Q, let 
P1 . . . . .  P, be the unique solution of the tbllowing Lyapunov 
equations: 

ArpI + PIA t = -Q 

A, r P~ + P,.A; = P,._, V i: 2..n 
(7) 

If  the following assumption is made: 

AIA j = AjAi V i, j : l..n (8) 

i. e. all matrices commute pairwise, then the T-S fuzzy 
system (5) is globally asymptotically stable and have as a 

common lyapunov function V (x) = xr  p, x 

Proof'. see [ 12] [] 

These results mean that a sufficient condition for the 
existence of a common P is that each Ai must be 
asymptotically stable and commute pairwise. 
It is also shown that a common P exists if the following 
conditions hold [! 1]: 

A i + A i < O  V i ,  j : l . . n  (9) 

The proof can be easily obtained by summing the LMIs (6). 

3515  



This result means that a necessary condition for the 
existence of a common P is that each Ai and (A~+As) must 
be stable. 
These above conditions show clearly the conservativness of 
the method, i.e. we can find T-S fuzzy systems that are 
stable but there is no common P to prove the stability. 

4 Stability analysis using non-quadratic 
Lyapunov function 

So one way for obtaining relaxed stability conditions and 
overcome these limitations consists to use a non-quadratic 
Lyapunov function candidate defined as: 

i t h  rule : 

IF x~ (t) is F~ and .... x (t) is F, ~, THEN V (x(t)) = x r P~ x 

where each T-S rule has the same fuzzy sets as the fuzzy 
system in the antecedents and quadratic Lyapunov 
functions in the consequent. 

Using the same inference as before we obtain the following 
state dependent Lyapunov function: 

V(x)  = xr  p (x )x  

,1 

with P(x) = E I'ti (x(t))P~ and p. = g r  > 0 
i = 1  

where /./~ (x(t)) has the properties (3). 

The derivative of this Lyapunov function is: 

(10) 

(11) 

(i(x(t)) = 5¢(t)r P(x)x(t) + x(t) r P(x)~t) + x(t) r P(x)x(t) (12) 

Proposition 1: given a matrix as in (11), one can bound the 
last term of (12) as follows: 

with: 

r 

x(,  P(x)x(, rll (t)llllx(,ll2 (P,) 
i = 1  

l~ax~ ~l't' (x(t)) I] 
) '= . ,  ~ 3x(t) ) 

r is the number of rules activated simultaneously at each 
time such that 2_< r_~ n and the eigenvalues are ordered such 
that: 

~, (P,) > ...> L~ (Pr) > '"> &, (P) 

Proof." The proof follows from bounding the derivative of 
the normalized membership functions and considering the 
properties of the largest eigenvalue of a symmetric matrix 
[14] • 

Theorem I: Suppose that there exist Q and Pi such that the 
following LMIs hold: 

V i : l . . n  A r i P i + g A i < - Q  and (13a) 

a r, pj + PjA i + arpi  + PiAi 
V i *: j : 1..n < - Q  (13b) 

2 
such that/1~ (x(t))#~ (x(t)) ~ 0 

Then the global model (5) is exponentially stable if the 
following constraint on the variation of the state is satisfied: 

[l~(t)ll ~ ~u(Q), (14) 
~'Y~ &, (P,) 

t = l  

Proof." The proof is obtained by computing the derivative of 
the Lyapunov function (12) along the trajectory of the T-S 
fuzzy system (5) and takes into account the proposition 1. 
The exponential stability is proved by considering the 
properties of the largest and the smallest eigenvalues of 
symmetric matrix [14]. • 

Example 

In order to appreciate the efficiency of the proposed 
method, we consider example given in [1] where the T-S 
fuzzy model is composed of two rules. 

rulel : IFx~ (t) is F~' THEN Jc(t) = Alx(t  ) 

rule2:  IFx, ( t )  is F~ 2 THEN Jc(t) = Azx(t) 

The fuzzy sets are described by the following two triangular 
membership functions: 

It I (x(t)) = 1 - Ix,(,)t IX 2 (x(t) ) = 1 - tl 1 (x(t)) 

and: Al = , A2 = 20 

the global T-S fuzzy model is: 

k(t) = (I-q (x(t))Ai + ~2 (x(t))Az)x(t)  (15) 

Note that a common P satisfying (6) that proves the 
stability of the system (15) does not exist whereas the 
simulation results indicate that this system is 
asymptotically stable. 

Stability conditions in theorem 1 give the following LMIs: 

3 5 1 6  
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Ar~ P~ + P~A, < - Q  

A[ ~ + P2A2 < - Q  (16) 

ar  pz + P2AI + ar  pl + Pia 2 < - Q  
2 

By solving LMIs (16) the following values are obtained: 

=[0.77 0.20 t =I2 .86 0.101 =I5.49 3.081 
P~ Lo.20 0.51j 'P2 LO.lO 0.44j ' a  L3.08 1.74j 

Then the inequality (14) allows to deduce the conditions of 
stability, namely the upper bound of the state variation of 
the system: 

II (t)ll-< 7.64 (17) 

The figure 1 shows that, with respect of the constraint (17), 
all trajectories of the above fuzzy systems converge to zero. 

2 

0 0.5 1 1.5 

0 0.5 1 1.5 
~ o [  . . . . . . . . . . . . . . . . . . . . . .  

0 0.5 1 1,5 
t ime 

Figure 1 : States trajectories of (15) with initials 
values x(0) = [- 2.5 2] 

5 N o n - q u a d r a t i c  s tabi l izabi l i ty  

In this section we utilise the PDC technique [7][2][4] to 
design fuzzy controllers to stabilize fuzzy system (4). In the 
PDC approach, the consequent part is local linear feedback 
law and the antecedent part shares the same fuzzy sets as 
the fuzzy system. 

i th rule : 

IF x, (t) is F, ~ and .... x (t) is F~ THEN u(t) = -K,x(t) 

the resulting global fuzzy controller, which is nonlinear in 
general, is: 

n 

u(t) = -~_~/2 i (x(t))Kix(t) (18) 
i = 1  

where/.t i (x(t)) is defined in (3). 
Substituting (18) in (4), we obtain the closed-loop T-S 
continuous fuzzy system: 

n n 

JC(t) = ~.d ~-~ 121 (x(t))Aox(t) 
j = l  i=1  

where Aij = Ai - Bi K j 

(19) 

5.1 Stabilizability analysis using a non-quadratic 
Lyapunov function 

To study the stability of the closed-loop T-S fuzzy system 
(19) and find appropriate Ks gains, we need the tbllowing 
propositions to prove theorem 2. 

Proposition 2 : given normalized membership functions as 
described in (3), the tollowing inequality holds: 

n ~_, #(x ( t ) ) la j (x ( t ) )<l  1 V 2 < r < n  (20) 
r 

where (r) is the number of rules activated simultaneously at 
each time. 

Proof : the proof follows from the properties of the 
normalized membership function (3) and the corollary 4 in 
[2]. 

Proposition 3: given normalized membership functions as 
described in (3), the following inequality holds: 

" 1 n 
~.,I.t,(x(t)) ~ >-r-~_~#,(x( t ) )#j (x( t ) )2  (21) 

i=1 i ~ j  

V 2 < r < n  

Proof : the proof follows from the proposition 2 and the 
properties of the normalized membership function (3). [] 

In the following, for less of conservatism, it is assumed that 
only two rules (sub-models) are activated simultaneously at 
each time, assumption easy to realise in the case of 
triangular and trapezoidal normalized memberships 
functions. 

Let us now define the following matrices: 

= - T p  
Hok AO k + PkAo (22) 

Theorem 2: Suppose that there exist Q and P such that the 
following LMIs hold: 
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Vi : l . . n  H , ~ < - Q  and (23a) 

Vi ,  j : l . .n  H o , + H j , + H , j < - Q  (23b) 

such that: /.t~ (x(t))l~j (x(t)) ~ 0 

Then the global model (19) is exponentially stable if the 
following constraint on the variation of the state is satisfied: 

II (t)ll_< (24) 
~ ' ~  ~,~, (P,) 

~=1 

Proof" The proof is obtained by computing the derivative of 
the Lyapunov function (12) along the trajectory of the T-S 
fuzzy system (19) and takes into account the proposition 1 
and proposition 3. • 

The LMIs design (23) allows to obtain simultaneously the 
controller feedback gains Ki, Q and Pi matrices and then 
compute the constraint (24) which ensure the exponential 
stability. 

5.2 Numerical example 

Consider the following T-S fuzzy model composed of two 
rules: 

rule 1 : IF x, (t)is F~' THEN 2(t) = A~x(t)+ B,u(t) 

rule 2: IFx~(t) is F~ 2 THEN 2(0 = A2x(t)+B2u(t) 

where F~' and F~ 2 are fuzzy sets described by the following 
two triangular membership functions: 

~,(x(t)) 1 + x~(t) - - - ,  ~2 (x(t))  = 1 - l.t~ (x( t ) )  
2 

The state matrices and input vectors of each T-S local linear 
model are: 

12-3, -71.83 227.6- [!] 
A t = 1 0 0 , B I = 

0 1 0 

[ 1 " ! 0 4 - 1 0 7  1!01 [ ! 1  
A z = 0 , B z = 

1 3 

One note that a common quadratic Lyapunov function to 
design the T-S fuzzy controller and then prove the 
stabilization [2] of the above closed loop T-S system does 
not exist. 

From conditions (23) given in theorem 2 we obtain the 
following BMI (Bilinear Matrix Inequality) problem: 

with : '4i) = A~ - B~ K i 

(25) 

We know that BMI formulation is not convex problem and 
can have multiple local solutions. To linearize and solve 
these BMIs, we propose to decompose them on the 
following system : 

[ A,~P+P,.,~, < - Q  V i : l , 2  

A ~ + P j A ,  <0  V i : ~ j : I , 2  

A~P2 + P2A2, + A,~P2 + P2A,2 < - Q  

(26) 

Global optimality is ensured through the convex 
reformulation of the problem. This convexity is achieved 
through the matrix change of variables: 

Pi -l = Xi, Yij = KiX j, Si = XiQXi 

where: X , = X  r, > 0  Vi, j : I , 2  

Constraints (26) can be shown equivalent to the six 
following LMIs constraints: 

X,AIr + A ,  X i - Y ~ B f  - B , Y ~  < - S ,  i:1..2 

X~A'~ + AjX~-YrBr-BjYj,ji j < 0  i ~  j ' l . . 2  

x , ( a f  +a j r )+ (Aj  + A , ) X , - Y ] B ~  - B j Y ,  

- Y f ~ B J - B ,  Yj, <-S ,  i V j :I..2 

(27) 

The feedback gain Ki, matrix Pi and a common matrix Q 
can be obtained as: 

Pi = X T l ,  Ki  = Yo'Pj, Q = P~S,P~ 

Solving the LMIs system (27), we obtain • 

I2.1 7.6 33.8 1 [3 .3  9.8 68.8 

PI = 7.6 1421 14681,P2= 9.8 155.5 201.7 

33.8 146.8 11368J 68.8 201.7 23206 

0.84 3.04 13.52 " 

Q=103 / 3.04 56.84 58.72 

[.13.52 58.72 454.72 
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K,=[7.39 36.07 205.38], 

K 2 = [-8.34 - 24.36 -279.52] 

The inequality (24) allows to compute the upper bound of 
the rate of variation of state variables guaranteeing the 
exponential stabilization of the global closed loop T-S 
fuzzy systems. 

Ilx(t)ll _< 109.40 (28) 

20 

1 

0 

~,20 

z 0 

i 
0 015 , ,15 

I 0.5 

J 

i 
1 115 

' ' O. 'I 5 .' ' ' ' ' ' ' 0.05 0.1 0 2 0.25 0.3 0.35 0.4 0,45 0.5 

0,5 1 1.5 
time 

Figure 2: States trajectories with initials 
va luesx(0)=[- I  1 - 2 ]  

6 Conclusion 

The main originality of the proposed method concerns, on 
one hand, the reduction of the number of constraints 
guaranteeing the stability of the global system and, on the 
other hand, the laying down of a systematic method for 
computing upper bounds of the rates of variation of state 
variables guaranteeing the stability and the stabilization of 
T-S continuous fuzzy systems. 
We have presented new relaxed stability conditions and 
LMI-based designs for continuous fuzzy control systems. 
More precisely, the stability is proven if the rates of 
variations of the states are bounded. This class of Lyapunov 
function is substantially richer than the globally quadratic 
functions. By exploiting the non-quadratic stability of T-S 
continuous fuzzy systems and solving a convex 
optimisation problem formulated as a set of LMIs, we have 
shown how to pick systematically upper bounds of the 
variation of the state to guarantee the stability of the global 
T-S continuous fuzzy model. These conditions may be used 
to design fuzzy regulators and/or fuzzy observers. 
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