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Abstract— This paper deals with the stability analysis of
interval Takagi-Sugeno. Based on a quadratic Lyapunov func-
tion, new asymptotic stability conditions for continuous case
are presented without any assumption on the norm of matrices
uncertainties. This result is obtained directly according to
the bounds (minimal and maximum) of the intervals of each
element of matrices representing the system. These stability
conditions, extended to the design of controller, are formulated
in terms of linear matrix inequalities (LMI). Example is given
to illustrate the proposed method.

I. INTRODUCTION

In the last decade, engineers have successfully utilized
Takagi-Sugeno (T-S) approach in modelling and control [7].
T-S allow to represent nonlinear dynamic systems and their
basic structure includes a number of approaches: multiple
model [4], PLDI [8].
Analysis and synthesis studies of T-S based on quadratic
Lyapunov functions lead to result which are often
conservative [18], [6], [2]. To overcome these conservatism
non quadratic Lyapunov functions may be used. Among
these functions, we can quote the piecewise quadratic
function [17]. The stability analysis using this type
of function was studied these last years by using the
uncertain system techniques [10]. In [11] another class of
non quadratic Lyapunov functions of the form was also
considered. Some works also propose another type of non
quadratic Lyapunov function - polyquadratic and piecewise
Lyapunov functions- [9], [19], [12], [16], [13]. The obtained
results make it possible to also reduce the conservatism of
the quadratic approach. However, in engineering problems,
systems are often complex, uncertain and ill-defined.
Recently, some works have proposed methods of studying
stability analysis and designing controllers for nonlinear
systems with uncertainties [6], [15]. The use of intervals
allows one to take account of uncertainties, the parameters
of a system being considered as variable but belonging to
a bounded domain [1], [3], [5]. Another works has been
also published on the use of interval arithmetic [1], [3],
[5], mainly in modelling, identification [20] and control
[14].

In this paper, the interval T-S (IT S) representation,
allowing to take account of bounded uncertainties affecting
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the parameters of the process, is used. The idea consists
on representing the uncertainty by means of interval
parameters. The paper, based on the work of [3] in the
case of linear system, is organized as follows. In the next
section, IT S is defined. In section 3, using the quadratic
Lyapunov approach, stability analysis of such system
is performed leading to conditions expressed in LMI
formulation [8]. The section 4 is devoted to the design of
robust controller of IT S. Two illustrative examples are
then developed in the last section.

Notations - Throughout the paper, the following useful
notation is used: XT denotes the transpose of the matrix
X , X > 0 (X ≥ 0) means that X is a symmetric
positive definite (semidefinite) matrix, In denotes the
n.n identity matrix, Is = {1, 2, .., s}, diag(X1, ..., Xn)
is a diagonal matrix which the diagonal elements
are Xi, i ∈ In and [X], with X = (xij) ∈ Ru.v ,
denotes an interval matrix such that [X] ∈ [X, X] and
[X, X] = {[xij ] : xij ≤ [xij ] ≤ xij , (i, j) ∈ Iu × Iv}.

II. INTERVAL TAKAGI-SUGENO REPRESENTATION

The IT S is represented as follows:

ẋ(t) =
s∑

p=1
µp(z(t))([Ap]x(t) + [Bp]u(t))

y(t) =
s∑

p=1
µp(z(t))[Cp]x(t)

(1)

with s is the number of local models, x(t) ∈ Rn is the
state vector, u(t) ∈ Rm is the input vector, y(t) ∈ Rl

is the output vector, z(t) ∈ Rw is the vector of the
so-called decision variables, [Ap] ∈ Rn.n, [Bp] ∈ Rn.m

and [Cp] ∈ Rl.n are interval matrices characterizing the
pth local model. Uncertainties affecting the parameters of
the T-S are taken into account when considering the lower
and upper bounds of matrices [Ap] and [Bp] respectively
defined by:

Ap =




a11p a1np

...
. . .

an1p annp



 , Ap =




a11p a1np

...
. . .

an1p annp





Bp =




b11p b1mp

...
. . .

bn1p bnmp



 , Bp =




b11p b1mp

...
. . .

bn1p bnmp





(2)
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The activation functions µp(.) are such that:






s∑
p=1

µp(z(t)) = 1

µp(z(t)) ≥ 0, ∀ p ∈ Is

(3)

The choice of the variable z(t) leads to different
classes of models. It can depend on the measurable state
variables, be a function of the measurable outputs of the
system and possibly on the input. In this case, the IT S
(1) describes an uncertain nonlinear system. It can also
be an unknown constant value, IT S (1) then represents a
PLDI [8].

In the following, the bounds are assumed to be known.
Equivalent forms of the matrices [Ap] and [Bp] can be
written such that:

[Ap] = Ap0 +
n∑

i=1

n∑
j=1

ei[fijp]eT
j

|[fijp]| ≤ δa
ijp, δa

ijp = 1
2

(
aijp − aijp

) (4)

[Bp] = Bp0 +
n∑

i=1

m∑
j=1

ei[gijp]hT
j

|[gijp]| ≤ δb
ijp, δb

ijp = 1
2

(
bijp − bijp

) (5)

with the definitions:

Ap0 = 1
2

(
Ap + Ap

)
, ∆Ap = 1

2

(
Ap − Ap

)

Bp0 = 1
2

(
Bp + Bp

)
, ∆Bp = 1

2

(
Bp − Bp

)

ei =
(

0 . . . 1
ith element

. . . 0
)T

, ei ∈ Rn

hi =
(

0 . . . 1
ith element

. . . 0
)T

, hi ∈ Rm

(6)

In the following, we are interested by the stability of the
unforced IT S (1) writen in the equivalent form:

ẋ(t) =
s∑

p=1

µp(z(t))



Ap0 +
n∑

i=1

n∑

j=1

ei[fijp]eT
j



 x(t) (7)

III. STABILITY ANALYSIS OF IT S

In this section, we investigate the stability of the au-
tonomous IT S (7) using the quadratic Lyapunov function
V (x(t)) = x(t)T P−1x(t), P > 0. The unforced continuous
IT S (7) is globally asymptotically stable if there exists a
symmetric matrix X > 0 such that:

P [Ap]T + [Ap]P < 0 ∀p ∈ Is (8)

The following lemma is useful for the proof of theorem 1
that establishes the asymptotic stability of the IT S (7).

Lemma 1: Given real matrices X, Y, F of appropriate

dimensions with FT F ≤ I then for any positive scalar
λ > 0, the following inequality holds:

XFY + Y T FT XT ≤ λXXT +
1
λ

Y T Y (9)

Theorem 1: The IT S (7) is quadratically asymptotically
stable if there exists matrices P > 0 and
V = diag

(
λ11...λ1n ... λn1...λnn

)
> 0 satisfying

the following LMI ∀p ∈ Is:
(

PAT
p0 + Ap0P + E∆a

pFV F∆a
pET PE

ET P −V

)
< 0 (10)

with

∆a
p = diag

(
δa
11p...δ

a
n1p δa

12p...δ
a
n2p ... δa

1np...δ
a
nnp

)

E = ( In ... In︸ ︷︷ ︸
n times

)

(11)
and F is permutation matrix such that

FV F = diag
(
λ11...λn1 λ12...λn2 ... λ1n...λnn

)

(12)

Proof :Taking into account the values of the bounds
on [fijp], the lemma 1 allows to write the successive
expressions:

P [Ap]T + [Ap]P = PAT
p0 + Ap0P+

n∑
i=1

n∑
j=1

(
P

(
ei[fijp]eT

j

)T +
(
ei[fijp]eT

j

)
P

)
(13)

P [Ap]T + [Ap]P ≤ PAT
p0 + Ap0P+

n∑
i=1

n∑
j=1

(
λij(δa

ijp)2eieT
i + 1

λij

(
PejeT

j P
)) (14)

Let us remark that
n∑

i=1

n∑
j=1

1
λij

(
PejeT

j P
)

= (P . . . P ) V −1 (P . . . P )T

(P . . . P ) = PE
n∑

i=1

n∑
j=1

λij(δa
ijp)2eieT

i = E∆a
pFV F∆a

pET

(15)
The stability condition (10), taking into account (15), is
only the Schur complement of (14), that gives:

P [Ap]T + [Ap]P ≤(
PAT

p0 + Ap0P + E∆a
pFV F∆a

pET PE
ET P −V

)
< 0

(16)
with ∆a

p, E and F defined in (11) and (12). An example
of construction of the permutation matrix F is given in the
section 5.
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IV. CONTROLLER DESIGN OF IT S

The dynamic of the closed loop IT S with the control law:

u(t) = −
s∑

p=1

µp(z(t))Kpx(t) (17)

is described by:

ẋ(t) =
s∑

p=1

s∑

q=1

µp (z (t)) µq(z(t)) ([Ap] − [Bp]Kq)x(t)

(18)
The closed loop IT S (18) is globally quadratically stabil-
isable if there exists matrices P > 0 and Kp satisfying the
following matrix inequalities ∀(p, q) ∈ I2

s :

P ([Ap] − [Bp]Kq)
T + ([Ap] − [Bp]Kq) P < 0 (19)

Theorem 2 : The closed loop IT S (18) is globally
quadratically stabilisable if there exist matrices P > 0,
V1 = diag

(
λ11...λ1n ... λn1...λnn

)
> 0, V2 =

diag
(
ν11...ν1m ... νn1...νnm

)
> 0 and Yp satisfying

the following LMI ∀(p, q) ∈ I2
s :





(
PAT

p0 + Ap0P + Bp0Yq + (Bp0Yq)T +

E1∆a
pF1V1F1∆a

pET
1 +

E2∆b
pF2V2F2∆b

pET
2

)
PE1 Y T

q E2

ET
1 P −V1 0

ET
2 Yq 0 −V2



 < 0

(20)
with

∆a
p = diag

(
δa
11p...δa

n1p δa
12p...δa

n2p ... δa
1np...δa

nnp

)

∆b
p = diag

(
δb
11p...δb

n1p δb
12p...δb

n2p ... δb
1mp...δb

nmp

)

E1 = ( In ... In︸ ︷︷ ︸
n times

)

E2 = ( Im ... Im︸ ︷︷ ︸
n times

)

(21)
and F1, F2 are permutation matrices such that

F1V1F1 = diag
(

λ11...λn1 λ12...λn2 ... λ1n...λnn

)

F2V2F2 = diag
(

ν11...νn1 ν12...νn2 ... ν1m...νnm

)

(22)

The controller gain is defined by

Kq = −YqP
−1 (23)

Proof : Taking into account the definition (4) and (5), with
Yq = −KqP , we obtain from (19):

P ([Ap] − [Bp]Kq)
T + ([Ap] − [Bp]Kq) P =

(Ap0P + Bp0Yq)
T + (Ap0P + Bp0Yq)+(

n∑
i=1

n∑
j=1

ei[fijp]eT
j P +

n∑
i=1

m∑
j=1

ei[gijp]hT
j Yq

)T

+
(

n∑
i=1

n∑
j=1

ei[fijp]eT
j P +

n∑
i=1

m∑
j=1

ei[gijp]hT
j Yq

)

(24)
The lemma 1 allows to write

P ([Ap] − [Bp]Kq)
T + ([Ap] − [Bp]Kq) P ≤

(Ap0P + Bp0Yq)
T + (Ap0P + Bp0Yq)+

n∑
i=1

n∑
j=1

λij(δa
ijp)2eieT

i +
n∑

i=1

n∑
j=1

1
λij

PejeT
j P+

n∑
i=1

m∑
j=1

νij(δb
ijp)2eieT

i +
n∑

i=1

m∑
j=1

1
νij

Y T
q hjhT

j Yq

(25)
The LMI (20), with definitions (21) and (22), is only the
Schur complement of the RHS of this last expression.

Remark: In the case of certain commun input matrix
Bp = Bp0, the closed loop LMI (18) is globally
quadratically stabilisable if there exists matrix P > 0,
diagonal matrix V1 > 0 and Yq satisfying the following
LMI:







PAT

p0 + Ap0P+
Bp0Yq + (Bp0Yq)

T +
E1∆a

pF1V1F1∆a
pET

1



 E1P

ET
1 P −V1



 < 0, (p, q) ∈ I2
s

(26)
The observer gain is defined by

Kq = −YqP
−1 (27)

with ∆a
p, E1 and F1 defined in (21) and (22).

V. NUMERICAL EXAMPLES: CONTROLLER SYNTHESIS

Consider the following example which correspond to the
example given in [6] where a is a parameter:

A10 =
(

−1 −1.155
1 0

)
, ∆A1 =

(
0.0 0.655a
0.0 0.0

)

A20 =
(

−1 −1.155
1 0

)
, ∆A2 =

(
0.0 0.655a
0.0 0.0

)

(28)

B10 =
(

1.4687
0

)
, ∆B1 =

(
0
0

)

B20 =
(

0.5613
0

)
, ∆B2 =

(
0
0

) (29)

The stability conditions derived in theorem 2 in the partic-
ular case Bp = Bp0 with a = 10 and:
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n = 2, E1 =
(

I2 I2
)
, V1 = diag (λ11, λ12, λ21, λ22)

(30)
lead to the resolution of four LMI which are feasible in
V1 > 0 and P > 0 and give:

P =
(

6.6110 −2.4923
−2.4923 1.6386

)
(31)

V1 = (8.7579, 8.7579, 8.7579, 8.7579) (32)

and the controller gain

K1 =
(

127.9163 197.0453
)

K2 =
(

127.9163 197.0453
) (33)

Which shows that our LMI conditions, compared with
result given in [6], allow to compute a robust controller
for a large parameter a = 10(>> 1).

VI. CONCLUSION

In this paper, the stability analysis and the synthesis of
robust controller for an uncertain nonlinear model de-
scribed by an IT S are considered. Such models consist
of a weighted sum of linear systems involving uncertain
bounded parameters and allow to describe a large class
of nonlinear systems. Using the quadratic Lyapunov func-
tion candidate, sufficient conditions for global asymptotic
stability are established. The result is extended to design
controller in LMI formulation. Examples are given to
illustrate the proposed results.
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