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Abstract: In this paper, the separation principle for discrete 
nonlinear systems in multiple model representation is 
investigated. The separation principle deals with a property 
which allows the multiple observer and the multiple 
controller to be designed separately. Using the quadratic 
Lyapunov technique and LMIs (Linear Matrix Inequalities) 
formulation, sufficient conditions for the global exponential 
stability of discrete multiple controllers are derived which 
are dual to those for the global exponential convergence of 
discrete multiple observers. A numerical example is given 
to illustrate the method. 
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1. INTRODUCTION 

There have been several studies concerning the issue of 
stability, the design of state feedback multiple controller as 
well as the design of state multiple observer [2][4][11] for 
nonlinear systems in multiple model representation [8]. The 
multiple model approach uses the Takagi-Sugeno (T-S) 
modelling [1][7] shown to be a universal approximator 
[9][16]. The multiple model representation consists to 
construct nonlinear dynamic system by means of 
interpolating the behaviour of several LTI submodels. Each 
submodel contributes to the global model in a particular 
subset of the operating space. 
Many works have been carried out to investigate the 
stability analysis of such multiple models. Sufficient 
conditions for the stability and stabilisability have been 
established using a global quadratic Lyapunov function 
[2][4][5][121115][111. The stability depends on the 
existence of a common positive definite matrix guarantying 
the stability of all local subsystems. These stability 
conditions may be expressed in Linear Matrix Inequalities 
(LMIs) form. The obtaining of a solution is then facilitated 
by using numerical toolboxes for solving such problems. 
Moreover, a certain form of multiple observers has been 
proposed and sufficient conditions for the asymptotic 
convergence are obtained which are dual to those for the 
stability of multiple controllers. LMIs constraints have been 
also used for pole assignment in LMI regions to achieve 
desired performances of multiple controllers [10] and 
multiple observers [17]. Once a multiple observer for 

nonlinear system in multiple model representation is 
obtained, one might be tempted to think that this one can be 
used together with a state feedback multiple controller as in 
case of linear systems. It's well proved, in case of linear 
systems, that if only the constructed state is available one 
can combine state feedback controller and observer to 
obtain a stabilising output feedback controller. Moreover 
the spectrum of the closed loop linear system consists of the 
spectrum of the observer and the spectrum of the feedback 
system [13]. This fact known as the separation principle 
has been studied for nonlinear systems (see for example [6]; 
and herein references). The separation principle of multiple 
model has been studied in [3][12][15]. However, it is not 
known if the combination of convergent multiple observer 
with stabilising multiple controller guarantees the stability 
of the closed loop nonlinear system in any form of multiple 
model stability [ 18]. 
In this paper, using the quadratic Lyapunov technique, 
sufficient conditions for the global exponential convergence 
of discrete multiple observer are derived in LMIs form 
which are dual to those for the stability of the state feedback 
multiple controller. Under the assumption that discrete 
nonlinear system in multiple model representation is locally 
stabilisable and locally detectable, the separation principle 
is studied and a parametric quadratic Lyapunov function is 
computed for the augmented multiple model. An example is 
given to illustrate the theory. 
Notation: In this paper, we denote the minimum and the 
maximum eigenvalues of the matrix X by )~min(X)and 
~,max(X) respectively, the definite positive matrix X by 

n F/ F/ 

X > 0, the transpose of X by X r ,  ~ x i x j - ] ~  ]~xixj 
i<j i=lj=l,j>i 

2. MULTIPLE MODEL REPRESENTATION 

Consider the following nonlinear dynamic system in the 
multiple model representation: 

F/ 

x(k + 1) - Egi(z(k))(Aix(k)+ Bin(k)) (1) 
i=1 

where x(k)c IR e is the state vector, n(k)~ IRm is the input 

vector, n is the number of submodels, y(k)EIR 1 is the 



output vector, A i • ]R p'P, B i •JR p'm and z(k) • IR q is the 

decision variable vector. The choice of the variable z(k) 

leads to different class of systems. It can depend on the 
measurable state variables and possibly on the input; in this 
case, the system (1) describes a nonlinear system. It can also 
be an unknown constant value, system (1) then represents a 
polytopic linear differential inclusion (PLDI) [ 14]. 
The activation function gi ( z (k ) )  in relation with the i t/, 
submodel is such that 

• g i ( z ( k ) ) = l  

[t.ti(z(k)) > 0 V i•{1 .... n} 

(2) 

The final output of discrete multiple model is also 
interpolated as follows: 

It/ 

y ( k ) -  E g i ( z (k ) )Cix (k )  (3) 
i=1 

Where C / •  IRt'P are the output matrices. More detail about 

this type of representation can be found in [ 11. 
It should be point out that at a specific time, only a number 
r of local models are activated, depending on the structure 
of the activation functions lai (.). 

3. STABILITY ANALYSIS 

The unforced multiple model of (1) is defined as: 

Itl 

x(k  + 1) -  E ~ i ( z ( k ) ) A i x ( k  ) (4) 
i=1 

The discrete system described by (4) is globally 
asymptotically stable if there exists a common matrix 
p = pT  > 0 such that [4] 

A T p A i - P < O  V i • { 1  .... n} (5) 

The existence of such a common positive definite matrix 
described by LMIs (5) is a key to check the global stability 
of the discrete multiple model (4). 

3.1 Multiple model controller 
In order to stabilise the multiple model (1) a multiple 
controller is designed using the PDC technique [2]. In the 
PDC technique, the global control law is obtained by 
interpolation of local linear feedback laws as the multiple 
model representation of the nonlinear system. For the 
multiple controller design, it is supposed that the system (1) 
is locally stabilisable, i.e. the pairs (Ai, Bi), V i•{1 .... n} are 
stabilisable. The resulting global controller, which is 
nonlinear in general, is: 

H 

u(k) - - L B i ( z ( k ) ) K i x ( k )  (6) 
i=1 

where ~ti(z(k)) has to respect constraint (2). 

Substituting (6) in (1), we obtain the closed-loop discrete 
multiple model: 

F/ H 

x(k  + 1) - E EMi(z (k ) )Mj(z (k ) )Ri jx (k )  
i=lj=l 

where 

(7) 

Rij = Ai - BiK j (8) 

Next, we will extend stability conditions derived in [2] to 
global exponential stability. For demonstration the 
following results are needed. 

L e m m a  : Let X be a positive definite matrix and A, B 
square matrices, then 

A T x B +  B T x A  < A T x A  + B T x B  (9) 

Proof'. It follows directly from the following quadratic 

property: ( A -  B) T X ( A -  B) > 0, V X > 0 II 

Corollary [2]: Let r be the number of submodels 
simultaneously activated such that 2 < r < n, then 

1 r/ 

~ t i ( z ( k ) )  2 > ~ -  E 2 B i ( z ( k ) ) g j ( z ( k ) )  (10) 
i=1 r - -  1 i<j 

Theorem 1: The closed-loop discrete multiple model 
described by (7) is globally exponentially stable if there 
exist matrices K i and symmetric positive definite matrices 

P1 and Q1 such that 

I 1) RiiT p1Rii - P1 + r -  Q1 <0  V i~{1,.,, n} 

2 P1 2 - P 1 < ~ 2  

with R o = a i - B iKj  V i < j • {1 .... n} 

~i ( z (k ) )~ j ( z (k ) )  :/: O. 

( l la)  

( l lb)  

and 

Proof'. let us consider the Lyapunov candidate function 

V ( x ( k ) )  = x ( k )  ~ 8x(k),  P~ > 0 (12) 

This is a radialy unbounded Lyapunov function since that 
V x(k)  e lI~ 1~ 

~',nin (/~)llx(~)ll <_ )llxIql (13) 



Then tacking into account the trajectory of the multiple 
model (7): 

AV(x(k)) = V(x(k + 1))- V(x(k)) 

i=lj=lk=l/=l 

The property (9) allows to bound the above equality by the 
following inequality 

1 r " ~  (z(k))( )x(k) aV(x(k)) <_ 7x(k) ~_, ~_,~t~(z(k))~ 9 G~ 
~=lj=~ 

where Gij ( Rij + RJ i ) T - P'(.~,Rij + Rji ~,- 4P1. The 

member of (14) can be developed leading to: 

(14) 

right 

H 

i=1 

2x(k)T L~ti(z(k))~tj(z(k))i (Rij + Rji) 2 P1 (Rij + Rji) - Pl 

Taking into account the conditions (10) and ( l lb) ,  we 
deduce 

r/  

zXV(x(k)) < x(k) T ] ~  2 (z(k))(R~T p~ I~ - P~ + (r-1)~)x(k) 
i=1 

-x(k)r2~(z(k))~9(z(k)) k) 
i<j 

From (11 a) we obtain 

aV(x(k)) < -x(k) r-~x(k)  (15) 

And finally from (13) and (15) we deduce: 

min (Ol) a V ( x ( k ) ) < -  V(x(k)) 
2~max (P1) 

From the condition ( l la)  (which is equivalent to 16b), the 
~'min (Ol) 1 following property holds : 0 < < ~ .  

2)~ma x (/]) 2 r -  1 

Knowing that 2 < r < n, the exponential stability is ensured. 
II 

The control design problem is to find the feedback gains K i 
such that the closed loop system (7) is stable. The 
conditions (12) are not convex in P1 and K i . In order to 
convert them into an LMI problem, these inequalities are 

multiplied in the left and the right by p-1 and after the 
Schur complement [14] is used. Then, taking into account 
the definition (8), the constraint (12) become 

X1 >O, S1 >0  (16a) 

ir . . . . .  

I1 X1 1 / ( , )T  +-~-S~ > 0 (16c) 

V i < j • {1 ..... n} such that gi(z(k) )g j (z (k) )  =/: O, which 

are LMIs in X 1 , S1 and Y/Vi • {1 ..... n} wi th / ]  -X11  , 

Q1 - x~ -~slxi-~, K~ - ~x~ -~ 

3.2. Multiple observer design 

The multiple controller proposed in previous section is 
based on a state feedback. However, in practice, all the 
states of a system are not fully measurable. Thus, the 
problem addressed in this section is the construction of a 
multiple observer to estimate states of the multiple model 
(1). It is supposed that the decision variables z(k) are 
measurable and the multiple model (1) is locally detectable, 
i.e. the pairs (A i, Ci),V i6{1 .... n} are detectable. 
Using the same structure as the one for multiple controller 
design, the multiple observer for the multiple model (1) is 
written as follows 

:~(k+ 1) . gi(z(k))(Aifc(k)+ Biu(k)+ Li(y(k)-.~(k))) 

[~(k) =,E~t~ (z(k))G~(k) 
(17) 

where J(k) and ~(k) denote the estimated state vector and 
output vector respectively. The activation functions 
l,,ti(z(k)) are the same that those used in the multiple model 
(1). Denoting the state estimation error by 

2(k)=x(k)-~(k) (18) 

it follows from (1) and (17) that the observer error dynamic 
is given by the following equation: 

~(k + 1) - ~ ~rxi(z(k))rxj(zfk))Oo~(k) i=lj=l 
where 

(19) 

®ij = Ai - LiCj (20) 

The design of the observer consists to determine the local 
gains L/ to  ensure the convergence to zero of the estimation 
error (18). To prove the global exponential stability 
conditions of the estimation error (18), the following result 
which is derived from theorem 1 is proposed. 



Theorem 2: Suppose that there exist matrices L/ and 

symmetric positive definite matrices P2 and Q2 such that 
:~(k + 1) - f_., 2gi(z (k) )g j (z (k) ) (Ri j} (k)+ LiCj2(k)) (25) 

j= l i= l  

1) 
OiiP20ii-P2 + r -  Q2 <0 V ie{1 .... n} (21a) 

9 0 .  
P2 - P2 < ----'~" (21b) 

2 2 2 

with Oij =A i - L i C  j V i < j  e{1 .... n} and 

gi(z(k))gj(z(k))=/:O. Then there exists an observer such 

that the error estimation (18) is globally exponentially 
stable. II 

where Rij and 2(k) are defined in (8) and (18) respectively. 

Combining (25) and (19) we obtain the following 
augmented system 

~(k + 1) -  ~ ~gi(z(k))gj(z(k))A~j~(k)  
i=lj=l 

where: 

(26) 

(27) 

With the definition in (20), the constraints (21) are bilinear 
in/4 and P2. The linearisation of (22) gives: 

P2 > O, Q2 > 0 (22a) 

i i ) r - - ~  YiCi) T > 0,Vi ~ {1 ..... n} (22b) 

P2 Ai - Yi Ci P2 

+7Q2 > 0 

V i< j • {1 ..... n} (22c) 

which are LMIs in P2, Q2 and Y/Vi • {1 . . . . .  n}  with 

L i - p 2 1 y i "  (23) 

4. SEPARATION PRINCIPLE 

In the case of linear system, it's proved that if the 
constructed state is available one can combine state 
feedback controller and observer to obtain a stabilising 
output feedback controller. Moreover the spectrum of the 
closed loop system consists of the spectrum of the observer 
and the spectrum of the feedback system. This fact is known 
as the separation principle. However in the multiple model 
representation which is nonlinear, the property of separation 
principle depends on the used method for proving the 
stability [3][15]. In this section, we show that for the form 
of multiple model stability stated above, the combination of 
the global exponential convergent multiple observer and the 
global exponential stabilising multiple controller guarantees 
the global exponential stability of the closed loop system. 
If instead of the actual state the constructed state s~(k) is 
available, the control law with the PDC technique (6) 
becomes 

n 
u(k) - - F_,gi(z(k))Ki~(k) (24) 

i=1 

Taking into account (17) and (24), we have 

To prove the global exponential stability of the augmented 
system (26), it suffices to find matrices Ki, Li and 
symmetric positive definite matrices P and Q such that 

"~iTp~i - P + ( r - 1 ) Q <  O V i~{1 .... n} 

( + ) ( z,j + ) Q 
P P < - -  

2 2 2 
V i < j ~{1 .... n} and gi(z(k))gj(z(k))¢: O. 

(28a) 

(28b) 

Thus to prove the global exponential stability, we need to 
compute the controller gains K i , the observer gains L/ and 
the symmetric positive definite matrices P and Q 
respecting the constraints (28). These latter, which are non 
convex in the variables Ki, Li and P, is difficult to convert 
into an LMI problem using the linearisation method 
described at the end of paragraph 3.1. In order to overcome 
this difficulty, the following theorem shows that it suffices 
to prove the stability of both the multiple controller and the 
multiple observer independently for proving the stability of 
the augmented systems (26). Similar approach can be found 
in [3][15]. The new of our method is to propose a 
systematic way to derive a parametric quadratic Lyapunov 
function proving the stability of the augmented multiple 
model (26). An example is given in section 5. 

Theorem 3: If there exist symmetric positive definite 
matrices 13, P2, Q1 and Q2 such that (12) and (22) are 
satisfied, then we can always construct a quadratic 
Lyapunov function which proves the global exponential 
stability of the augmented system (26). 

Proof'. With the following structure of P and Q: 

- > 0 ,  G ~ I R  P -  (YP2 >O,Q ¢~Q2 

Taking into account (8), (20) and (27), the inequalities (28) 
allow writing : 



- R .  P~L~G 

+ 

r -  < 0 V ie{1 .... n} ~J[O (YQ2 
(29a) 

P1 R/j +Rji p (,)T 

[( LiCj + LjCi ]r 2 _.I (Q1 O)  
2 p1Rij+Rji2 ~ij'-" "2 0 GQ 2 

V i < j e{1 .... n} and gi(z(k))gj(z(k)) ¢ O. 

<0 

(29b) 

where 

I~ Q + Lj Cf 

the Schur complement [14] applied to the inequalities (29a) 
and (29b) allows to prove that (5 will always exist if the 
inequalities (11) and (21) are satisfied. Thus it suffices to 
choose this one sufficiently large as follows: 

G >_ Max(~ 1, ~2 ) (30) 

where ¢yl and (52 
respectively. 

are defined in (31a) and (31b) 
II 

5. NUMERICAL EXAMPLE 

The following example demonstrates the utility of the 
proposed method. Let us consider the multiple model (1) 
where r = n = 2, z(k) = Xl(k) and 

_ (1.16 -1.09] 
A1 [0.11 0.94) 'B1 - ( ~ 1 )  'C1 -(1  0) 

(132.11 -26.87 / _ (26.87] 
A2 - 2.67 0.47 )' B2 [ 0.53 )' C2 -(1  0) 

(32a) 

(32b) 

ltll(Xl(k)) = 
(1- tanh(Xl (k))) 

,laz(xt(k))= 1-1at(xt(k)) (32c) 

From conditions (11) given in theorem 2 and with definition 
(8) we obtain the following feedback gains (after 
linearisation as it is described in (16)): 

K 1 -(4.9518 -0.9669), K 2 -(4.9189 -0.9645) 

and the definite positive matrices: 

_(0.0692 0.0608] _(0.0075 0.0080] 
P1 [0.0608 0.3845) ,Q1 [0.0080 0.0176) 

(33) 

And from conditions (21) given in theorem 4 and with 
definition (20) we obtain, (after linearisation as it is 
described in (22)), the following observer gains which 
ensure the exponential convergence of state: 

L 2 -(1.1849 0.0909) T, L 2 -(132.6410 2.6608) T 

and the definite positive matrices: 

_(0.0306 0.3905 3 _(0.0064 0.0153] 
P2 [0.3905 19.2415 ,Q2 [0.0153 0.7610) 

(34) 

The choice of the symmetric positive 

matrices:P ( P1 0 ) -  0 P2 and Q -  IQ1 0/Q2 
definite 

where P1, P2, Q1 and Q2 are defined in (33) and (34) 
respectively, fails to prove the global exponential stability 
(formulated in theorem 5) of the closed loop system of the 
numerical example (32). But the choice of the following 
symmetric positive definite matrix 

(o 10) ( 01 0) 
P -  (YP2 and Q -  GQ2 

............................................................................................. ÷ ............................................................................... ' - i  ..................................................... r ................................................................................................................ I nI( l - 1) T // )~ R nRL/C/ R nRR n P~+(r 1/2)Q R,1RL/C/ L/C/ RL/C/ 
(51 = Max | ~ ' ; " " g " ~  . . . . . . . . .  r | (3 la) 

Vie{1 .... n}[ ~,max(O]iP20ii _ p2 +(r_ l[ 2)Q2 ) J 

~ =  
~<j c-{L~} 

~ - 2 -  S 

such that gi(z(k))gj(z(k)) :/: 0 (31b) 



with ~ satisfies (30) and ((Yl,(Y2)-104(9.35, 5.10) 

obtained from (31), allow us to show the global exponential 
stability of the augmented system of (32) and prove that the 
design of multiple controllers and multiple observers can be 
done separately for the stability conditions derived above. 

The simulation of the augmented multiple model of (32) 
with the control law (24) is presented in figure 1. 
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Figure 1. Example of simulation of the augmented 
multiple model of (32) with the control law (24). 

6. CONCLUSION 

In this paper, the separation principle for discrete nonlinear 
systems in multiple model representation is considered. 
First, the global exponential convergence of discrete 
multiple observer are derived in LMIs form which are dual 
to those for the stability of multiple controller. Finally in 
case the decision variables depend only on the measurable 
state variables and possibly on the input, it is proved that 
the combination of the global exponential convergent 
multiple observer and the global exponential stabilising 
multiple controller, designed separately, guarantees the 
stability of the overall system. By the same way, a 
parameterised Lyapunov function is computed for the 
augmented system. It remains to prove that this property 
holds when the decision variables depend on the state 
variables estimated by the multiple observer. 
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