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Abstract

This paper deals with the stability analysis of Takagi-
Sugeno models (T-5). Based on a piecewise quadratic
Lyapunov functions and the use of the so-called S-
procedure, new asymptotic stability conditions for both
continuous and discrete T-S models are presented. The
stability conditions are formulated in linear matrix
inequalities (LMIs). Examples are given to illustrate the
advantage of the proposed method.
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1 Introduction

In the last decade, the issue of stability analysis for
nonlinear models described by Takagi-Sugeno models
[5][15] has been considered actively. Having the property
of universal approximation [8](9], this approach includes
the multiple mode! approach [17] and can be seen also as
Polytopic Linear Differential Inclusions (PLDI) [10].
Indeed, there is significant amount of research on quadratic
stability. These studies utilize the recently developed
interior-point convex optimization methods for solving
Linear Matrix Inequalities (LMIs} [10]. It is well known
that the stability depends on the existence of a common
positive definite matrix satisfying a set of LMIs
[21F41[10][12][16]. Nevertheless, restriction to the class of
quadratic ‘Lyapunov function candidate may lead 1o
significant conservativeness. In [19] stability conditions are
derived in terms of M-matrices and vector Lyapunov
functions by regarding the T-S models as an
interconnection of LTI subsystems while in [24] they are
treated as a linear system having modeling uncertainty. To
overcome this limitation, stability conditions relaxing
previous constraints have been established using a
piecewise quadratic Lyapunov function and the S-
procedure [13][14]. While in [13] the continuity of
Lyapunov function is carried out by requiring additional
constraints, in [14] the function of Lyapunov can be

0-7803-7516-5/02/$17.00 ©2002 IEEE

2143

discontinuous. A polyquadratic Lyapunov function which
is built on the same basis as the T-S model itself is studied
for continuous case {1][3][7][11][18). Using convex
optimization, this type of Lyapunov function is also
computed for discrete systems with time varying
uncertainties [6]. In Linear Parameter Varying (LPV)
systems, to reduce the conservativeness, quadratic
parameter dependant Lyapunov functions are used [20]-
[23]. The LPV systems may also be represented by T-S
models. However, the way which consist to embed
nonlinear systems into LPV framework, i.e. when the states
are viewed as time varying parameter, will lead obviounsly
to conservative results [1].

In this paper, the stability analysis of T-S models are
considered. New sufficient conditions for global
asymptotic stability are obtained using a nonquadratic
Lyapunov function and the so-called S-procedure. The
stability conditions are derived in a set of LMIs with
additional scalars parameters which can be numerically
computed. The proposed method is proved to be less
conservative compared to those derived via quadratic
stability analysis.

The organization of the paper is as follows. The section 2
is dedicated to the description of the continuous T-S
model. In section 3, a basic stability condition, helping to
precise the motivation of the paper, is described, while the
main result is established in section 4. The proposed
analysis is then extended to discrete T-§ medels and
compared to previous nonquadratic stability conditions.
Numerical examples for both continuous and discrete cases
are presented.

2 T-S continuous model

A continwous T-S model is based on the interpolation
between several LTI local models as follows:

() = 31 ()N A () + Byu(r)) ()
i=1



where n is the number of submodels, x(f) € R” is the state
vector, uHeR™ is the input vector,
A, eRPP B eRP™ and z(r)eR? is the decision
variable vector.

The choice of the variable z(r) leads to different class of

models. It can depend on the measurable state variables, be
a function of the measurable outputs of the system and
possibly on the input. In this case, the system (1) describes
a nonlinear system. It can also be an unknown constant
value, system (1) then represents a PLDL.

The normalized activation function p;(z(r)) in relation
with the i submodel is such that:

S 1. (z() =1
o) {2)

u,zn=0 viefl,..,n}

The global output of T-8 model is interpolated as follows:

¥ = 3 mEO)Cix(o)

i=1

&)

where y(r)e R’ is the output vector and C; € R'?. More

detail about this type of representation can be found in
[2][4].

In the rest of the paper, the following useful notation is
used: X7 denote the transpose of the matrix X and X >0

(X = 0) denote symmetric positive definite (semidefinite)
matrix.

3 Motivation of the paper

Consider the unforced continious T-S model of (1):

n
H) = T piz(NAx(n)

i=1

S

Sometimes, it is possible to prove the stability of a T-S
model (4) wusing a quadratic Lyapunov function
V(x()) = xT(t)Px(t), P>0. The method is based on the
following sufficient conditions:

If there exists a common symemetric positive definite matrix
P such that [2}

AT P+ PA, <0 Viel,..,n} )

Then the T-S model (4) is globally asymptotically stable.
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The existence of such a common positive definite matrix P
is a key issue to check the stability of a T-S model.
Inequalities (5) give a sufficient condition for ensuring
stability of (4). However, it is well known that in a lot of
cases, a common positive definite matrix P does not exist
whereas the T-S model is stable. The following lemma
gives a sufficient conditions for the non existence of a such
matrix P.

Lemma 1 [10]: If there exists matrices X;,V ie{l,..,n} not
all zero such that

n
X;20and 3 A7 X; + XA, 20

i=1

then the inequalities (5) do not admit a solution P> 0.1

The example in section 4.2 illustrates this fact. In some
cases, one way to reduce the conservativeness of the
quadratic analysis is the use of the so-called S-procedure
and the piecewise quadratic Lyapunov function [13}{14]. It
should be pointed out that the Lyapunov function used in
[14] is allowed to be discontinuous since the continuity is
not used in the proof.

4 Stability analysis of continuous T-S models

4.1

In the following, a new sufficient condition for global
asymptotic stability of T-S model (4) is established. Before
let us recall the following useful lemma.

Analysis

Lemma 2 (S-Procedure, [10]):
Let Fo(x(r))..., Fy{x(r)} be quadratic functions of the
variable x(r} € R?. Consider the following statements:

Fy(x()) < 0 for all x(f) such that

E{x(0)<0,Vie{l,...q} (©)

If there exists scalars 7y 20,..,7, =0 such that

Folx(1)- iTiFi(x(f)) <0 @
i=1

then (6) holds. u

The following theorem gives sufficient stability conditions
by using the S-procedure lemma and nonquadratic
Lyapunov function candidate [10] of the form



V(x(1)) = max(Vi{x(0))..., Vi (x(t),.., Vi (x(e)))

where Vi(x(r)) = x(t)T Px(y),

8

P >0,V iefl,..n}

Theorem 1 : Suppose that there exists symmetric matrices
P,V iefl,...n} and scalars Ty, 20 such that

T n
AP+ PA; + ZT"J{ P ~P 0
LA R b k=1,k¢}‘ ( J ) <0 9

0 -R

Vi je{l,..,n}. Then the T-S model (4) is globally
asympiotically stable.

Proof;

Considering the nonquadratic Lyapunov function candidate
(8). It follows that

V(x()) = V;(x(r)) if V;(x(1) 2 V;{x(0)).V j=ie{L...n}
(10)

Consequently

dvg:{’)kdv"g( ) i Vi(x() 2V (x(7)), j # ief{L...n}.

Considering all possible sitvations, we have

=]

V2,2V

eV 2V

av(e)
dt

ex(t)” zu, z(r)(

V>V1,,

)x(t) when Vx(f):

>V

=V,

{1n

To prove the stability of the system (4), it suffices to check,
along the trajectory of (4), that

dvix(1)

0v 0
3 x{(1) #

(12)

Consequently if Vie{l,..,n}

. x(I)T i}l,— (z(t))(A,TR + R4 )x(t) whenVx(t).
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’Ox(r);r(A,-:r B +R4 )x(t) <0 when ¥x{r):
N (R -P)x(1)20,... ()T (P - B, )x(1)2 0

dv(x(r) _ .X( Y (R - P)x(0) x(e)" (P = B, )x(r)

dt |

ox(t) (AT B+ PA (0 <O when V()

{7 (P, - B)x()20,..,x() (B, - P, )x() 2 0

(13)
then the T-S model (4) is globally asymptotically stable.

Finally, constraints (9) are obtained by applying the S-
procedure lemma to (13). |

Remarks:

1) It should be noted that the guadratic conditions {5) are
inclided in conditions derived in (9). So when

F=pPVie{l.,n} we have F-P;=0 and

V(x(t) = (v (x(1))) = x()" Px(z). Then
COI]dlthl'lS (9) become
T
(A,— P+PA; 0)(0 as
0 -P

which is only those of the quadratic case (5).

2) The same result can be obtained by using the
nonquadratic Lyapunov function
V(x(s)) = min{v;(x(1)) (15)
where V;(x(r)) is defined in (8).

3) The use of the S-procedure [emma and the
nonquadratic Lyapunov function (8) leads to a2 non
convex problem (9). However, if we fix Tijkes the
results of theorem 1 are convex in P, V ie{l,..,n} and
lead to n* LMIs to satisfy. The following example
illustrates this case.

4.2  Numerical example

Consider the T-S model (4) with n =3

3
x() = X (2(ENAx(r)

i=l

(16)

where the state matrices are



a0 N, (0 1), _(°0 204
17006 -1)"2 7194 1/ (05 -15

and the activation functions (figure 1) are as follow

_ 0 (x;(n)

111()11(1'))— U)l‘(xl(t))*'m?.(xl(t))+m3(x1(r))
_ @ (x, (1))

M2 (xl (t)) - o, (xl (;)) + mz(xl {t)) + 0)3(xl (f))
~ 03(x, (1))

w3 (x ()= @y (x(O0)+ 02 (x (D) + @3 (x; (1))

where

o) (x ()= exp[-;_-(x

2{x (1)
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Figure 1. Activation functions of (16).
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Although the three LTI local models are stable and
simulation indicate that the T-S model (16) is stable (figure
2), the resolution of the three LMIs obtained from (5)
shows that there is no quadratic Lyapunov function
ensuring stability of the above T-S model. This verification
can be made by solving the dual problem stated in lemmal:

X1>0,X2>0,X3>0
XA + A X + AT + 4%, + 54T A%, >0 ()

which is feasible and gives

156.4691 49.2586
1= » Xy =

492586 20.6692
(428931 21.6010
37121.6010 15.1008

743123 -89.4586
-89.4586 1125173}

The system (16) is then not quadratically stable. Moreover
the activation functions used in the T-S model (16) have
global support, consequently the stability conditions given
in [13] is reduced to the search of a common global
quadratic Lyapunov function and then fail to prove the
stability of the T-S model (16). However, with the
following choice of parameters:

T2 = T3 =0, T212 =T213 =L, 1313 = T3;3 =0
T2l =T33 =0 %95 = Tpo3 =L 7331 = 1353 =0

T131 = T132 =L Toa) = T232 =0, 1331 = T3 =1
(18)

our stability conditions derived in theorem 1 lead to nine
LMIsin A, P, and P;. By solving those LMIs, we obtain :

_{7L5815 49.0675 _[71.5815 49.0675
17149.0675 78.6195) 2 |49.0675 786195

(19)

(708724 147524
371147524 69.1407

15¢
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Figure 2. Example of simulation of the T-S system (16)

It is important to note that the LMIs set in P is obtained
from {9) by fixing the real parameters Tik- To pick those
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one, if any, an iteration method modifying the Ty
parameters is used.

5 Extension to discrete T-S models

A discrete T-S model is based on the interpolation between
several LTI local discrete models as follows:

n
x(k+1) = ¥ ;A x (k) + Biu(k))
i=1
where 7 is the number of submodels, x(k) € R? is the state
vector, u(kyeR™ is the input vector,
A eRPP B e RP™ and z(k)eR? is the decision
variable vector,

(20)

To prove the stability of the unforced T-S model of (20),
sufficient conditions are derived using a quadratic

Lyapunov function V{x(k)) = xT(k)Px{k), P>0. So, if
there exists a symmetric matrix P > O such that [2]:
vie{l,...,n} 21

then the unforced T-S model of (20) is globally
asymptotically stable.

ATPA-P <0

To reduce the conservativness of the quadratic methed, a

necessary and sufficient conditions for the computation of

the polyquadratic Lyapunov function of ‘the form
n

V(ek)) = xT () T (2())Bxk), B >0 are given in {6).
i=1

These stability conditions can be directly applied to

discrete T-S systems,

For less of conservatism, the following part extends results
derived in section 4.1 to the discrete T-S models

5.1

The stability conditions of the unforced discrete T-S model
of (20) is presented in the following theorem.

Stabilify analysis

Theorem 2 : Suppose that there exists symmetric matrices
P,V ie{l,..,n} and scalars T, 2 0 such that

T n
ATPA =P+ Yry(P-B) O

PR <0
0

(22)
~P.

T

Vi, je{l,..,n}. Then the unforced discrete T-S model of
(20) is globally asymptotically stable. |
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Proof : The proof is obtained as in theorem !, by using the
nonquadratic Lyapunov function (8) and the S-procedure
iemma.

The result obtained in (22) is less conservative than those
of (21). We can prove easily that the quadratic conditions
are included in the derived conditions by substituting
B, Vie{l,.,n} by P.

5.2
Consider the following discrete T-§ model with n =2

Numerical example

2
x(k+1) = X, (z(k))Ax(k)

=1

(23)

where

_(0.749
17\ 04

-1 A= 0932 04
08) %2 L 01 04
Quadratic conditions (21) and polyquadratic conditions
given in [6] fail to prove the stability of the discrete T-S

model (23). However the resolution of constraints (22) with
the following choice of parameters

T2 =072 =L 742 = 2,792, =0
give a set of four LMIs which are feasible in A and

11.7060 0.7443 11.0630 5.1254
171 07443 292653) "2 | 51254 14.8184

Consequently we conclude that the T-5 model (23) is
globally asymptotically stable. Example of simulation of
this system with the following activation functions is given
in figure 3 with two different starting points.

(1- tanh(x, (K)))

pylx (k) = >

y Mo (o (E))==p {x; (k)
{24)

6 Conclusion

In this paper, the stability analysis of nonlinear model
described by T-$ model is considered. Using the S-
procedure and nonquadratic Lyapunov function candidate,
sufficient conditions for the global asymptotic stability are
derived. Despite the fact that the obtained conditions are
not directly convex, it is proved that the derived stability
conditions allow to improve the results obtained by the
quadratic method. Two examples which are not
quadratically stable are given to illustrate the advantage of
the proposed results. The proposed stability conditions will
be extended to the stabilization of T-S models.
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Figure 3. Example of simulation of the T-S
model (23) with activation functions (24).
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