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Abstract—This paper investigates the problem of fault tolerant 
control (FTC) design for nonlinear Takagi-Sugeno (T-S) models 
with measurable premise variables. The idea is to synthesize a  
fault tolerant controller ensuring state trajectory tracking. Based 
on Lyapunov theory, new less conservative approaches are 
proposed in term of Linear Matrix Inequality (LMI). A PI 
observer is needed to estimate simultaneously the faults and the 
faulty system states in order to reconfigure the FTC law. A 
numerical example is considered to compare the conservatism of 
the proposed FTC approaches with the existing one and to 
illustrate the effectiveness of the FTC technique vs. the classical 
controller design methodology. 

Keywords- Takagi-Sugeno nonlinear  models, PI observer, state 
and fault estimation, LMI, Lyapunov theory, 2L  norm. 

I.  INTRODUCTION  
The classical control law schemes have shown their interest 

in the system stabilization framework. Nevertheless, if faults 
affect the system, the classical controllers may not ensure the 
system stabilization. In this case, fault tolerant control is 
introduced to take into account the faults affecting the system 
components. In literature, two kinds of strategies dealing with 
the above problem have been proposed. The first one is called 
robust control or passive FTC. The main idea of this technique 
is to consider the faults as non structural bounded uncertainties 
which effect on the system will be minimized by using the 2L  
norm. The passive control strategy is designed only for norm 
bounded faults which constitutes a major drawback of this 
technique. The second kind is called active FTC strategy. This 
latter requires the knowledge of the faults to reconfigure the 
controller to ensure the stability of the faulty system.   

The FTC problem has already been studied in the literature. 
For instance, fault tolerant controller design methodology for 
linear systems is proposed by [1], [2], [3], [4] and [5]. 
Recently, this study has been extended to the nonlinear systems 
given in Takagi-Sugeno [6] representation by [8]. 
Nevertheless, the proposed approach may be conservative. 
Moreover, new approaches for trajectory tracking FTC design 
for T-S models with unmeasurable premise variables have been 
proposed by [7] and [9].  

This paper aims to reduce the conservatism of the results 
proposed in [8] and to show the effectiveness of the FTC law 
compared to a classical one when faults affect the system 
dynamics. Thus, this paper is organized as follows. In the next 
section, the problem of fault tolerant controller design is 
presented. In section 3, an active FTC approach is proposed. In 
the last section, a numerical example is considered to illustrate 
the efficiency of the proposed active FTC approach compared 
to a passive one (developed in the appendix). Moreover, the 

feasibility areas of the proposed active FTC approach and the 
one given in [8] are compared. 

The following notations are considered to improve the paper 
readability. The single or double sums can be rewritten as: 

( )( )
1

r

i i
i
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=  and ( )( ) ( )( )
1 1

r r
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t tµµφ µ ξ µ ξ φ
= =
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The symbol ∗  denotes the transposed element in the symmetric 
positions of a matrix and ( )1,...., rdiag M M  is a block diagonal 
matrix which diagonal entries are defined by 1,..., rM M . The 
following lemma will be needed. 

Lemma 1 [10]: Consider two real matrices X  and Y  with 
appropriate dimensions, for any positive scalar δ  the 
following inequality holds: 
 
 1T T T TX Y Y X X X Y Yδ δ −+ ≤ +  (1) 

II. PROBLEM FORMULATION 
Let us consider the following T-S model without faults 
corresponding to the reference model.  
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where r  is the number of submodels, ( )tξ  is the measurable 

premise variable, ( )( )i tµ ξ  are the membership functions 

verifying the convex sum property ( )( )0 1i tµ ξ≤ ≤ and 
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1
r

i
i

tµ ξ
=

= , ( ) nx t ∈ , ( ) py t ∈  and ( ) mu t ∈  

represent respectively the state, the output and the input 
vectors, { iA , iB , iC , iD } are the submodels matrices. 
Consider the faulty system given by  
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where ( ) n

fx t ∈ , ( ) p
fy t ∈  and ( ) m

fu t ∈ represent 
respectively the faulty state and faulty output vectors and the 
fault tolerant control signal, ( ) mf t ∈  is the fault directly 
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affecting the input. The fault is supposed to be constant (i.e. 
( ) 0df t dt = ). 

The objective is to design a fault tolerant controller ensuring 
the convergence of the faulty state vector ( )fx t  to the 

nominal one ( )x t . The methodology of controller conception 
is based on the scheme depicted in Fig.1. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.1. Fault tolerant control strategy 
 
Let us consider the FTC law given by: 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )
1

ˆˆ
r

f i i f
i

u t t K x t x t u t f tµ ξ
=

= − + −  (4) 

where: m n
iK ×∈  are the state feedback gain matrices to be 

synthesized. The FTC design simultaneously requires the 
knowledge of the faulty state vector and the faults affecting 
the system. In order to estimate ( )fx t  and ( )f t , the 
following PI observer is considered: 
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 (5) 
where 1 n p

iH ×∈  and 2 m p
iH ×∈  are the observer’s gain 

matrices to be determined to estimate ( )f t  and ( )fx t . A first 
solution to this problem was proposed in theorem 5.4 of  [8]. 

III. FAULT TOLERANT CONTROLLER DESIGN 
In this section we propose a less conservative approach for 

fault tolerant controller conception. Let us respectively define 
the state and fault estimation errors defined by: 
( ) ( ) ( )ˆs f fe t x t x t= −  and ( ) ( ) ( )ˆ

de t f t f t= − . Let us also 
define the state tracking error ( ) ( ) ( )p fe t x t x t= − and the 
output estimation error ( ) ( ) ( )ˆy f fe t y t y t= − . By adding and 
substracting ( )fK x tµ in  (4), one can obtain: 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )ˆˆf f f fu t K x t x t K x t x t u t f tµ µ= − + − + − (6) 

The dynamics of ( )pe t  and ( )se t  are given by: 

 ( ) ( ) ( ) ( ) ( )p p s de t A B K e t B K e t B e tµ µ µ µ µ µ= − − −  (7) 

 ( ) ( ) ( ) ( )1
s s d ye t A e t B e t H e tµ µ µ= + −  (8)

 
According to (8), to avoid the crossing terms resulting from 
the observer’s gains 1

iH  and system matrices ( iC  and iD ) 
multiplication, we introduce a “virtual dynamics” in the output 
error ( )ye t  [11] [12]. This latter can be expressed as: 

 ( ) ( ) ( ) ( )0 y s d ye t C e t D e t e tµ µ= + −  (9) 

where 0 p p×∈  is a zero matrix. 
Since the faults affecting the system are supposed to be 
constant (i.e. ( ) 0f t = ), the dynamics of the fault estimation 
error  is given by: 
  
 ( ) ( ) ( )2 2

d s de t H C e t H D e tµ µ µ µ= − −  (10) 
 
The combination of (7), (8), (9) and (10) allows the 
formulation of the dynamics of ( )ye t , ( )pe t , ( )se t and 

( )de t in a descriptor form: 

 ( ) ( )Ee t A e tµ=    (11) 

where ( )0mE diag I I I= ,  ( )T T T T T
p s d ye e e e e=      and 
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The main proposed result can now be established. 
 
Theorem 1: The tracking error ( )pe t , the state ( )se t  and fault 

( )de t  estimation errors asymptotically converge to zero if 
there exists some matrices 0TX X= ≥ , 6 6 0TP P= ≥ , 11P I= , 

13P , 14P , 15P , 16P , 1
iH , 2

jH  and jK  such that the following 
LMI are satisfied for all , 1, 2,..,i j r= : 
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( ) ( )2,2 diag I I I I I Iϒ = − − − − − −
( )2,2

6 6 14 14
T T T

i i i i iP A A P P C C PΣ = + + +  
( )3,2 2

15 6 14
T T T

ij i j i i iP C H C B P D PΣ = − + +  
( ) ( )3,3 2 2

15

TT T
ij i j i i jD P H D D HΣ = − −  
( )4,2 1

16 14
T

i i iP C H PΣ = − −   
( )4,3

16 15
T

i iP D PΣ = − . 
 
Proof: Let us consider the following candidate quadratic 
Lyapunov function: 

 ( )( ) ( ) ( )TV e t e t EPe t=    (14) 
with: 
 0TEP P E= ≥  (15) 
A way to provide easily LMI conditions is to consider the 
matrix P structure as follows:  


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According to (15), it follows that 1 1 0TP P= ≥ , 6 6 0TP P= ≥ , 

11 11 0TP P= ≥  and 13P , 14P , 15P , 16P  are free slack matrices.  

The tracking error ( )pe t , the state ( )se t  and the fault ( )de t  
estimation errors converge asymptotically to zero if: 
 
 ( )( ) ( ) ( ) ( ) ( ) 0T TV e t e t EPe t e t EPe t= + <        (17) 
With (11) and  (14), the inequality (17) becomes: 
 ( )( ) ( ) 0T T Te t A P P A e tµ µ+ <    (18) 

The inequality (18) is fulfilled if: 
 
 0T TA P P Aµ µ+ <   (19) 
Indeed, with (12) and (16) the inequality (19) becomes: 
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where: ( )1,1
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Multiplying (20) left and right by ( )diag X I I I  where 
1

1X P−= , and considering 11 11 0TP P I= = >  and the bijective 

variable changes ( )1 1
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where: 
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Applying lemma 1 and considering 1 2 3 4 Iδ δ δ δ= = = = , the 
inequality (21) is implied by: 
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Applying Schur complement [13] on the BMI terms ( )1,1
µµΦ , 

( )2,2
µµΦ  and ( )3,3

µµΦ , the sufficient LMI conditions proposed in the 
theorem 1 hold.  

Remark 1: New LMI conditions can be provided from the ones 
given in theorem 1 by considering only the diagonal matrices 



of (16) (i.e. 1P , 6P , 11P  and 16P ). This result is given in 
corollary 1. 

Corollary 1: The tracking error ( )pe t , the state ( )se t  and the 

fault ( )de t  estimation errors convergence asymptotically to 

zero if there exists the matrices 0TX X= ≥ , 6 6 0TP P= ≥ , 

11P I= , 16P , 1
iH , 2

jH  and Kµ  such that the following LMI 
are satisfied for all , 1, 2,..,i j r=  
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where: ( )1,1 T
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T
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T
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ij j i i jH D D HΘ = − − .  
 
Remark 2: To ensure the stability of (3) even if faults occur, 
one has to check the existence of ( )2diag X P I  in theorem 
5.4 of [8] or the matrix P  given by (16) in the proposed 
approach. Indeed, the proposed approach (theorem 1) 
introduces some additional free slack variables to relax the 
existing LMI conditions. This conservatism reduction can be 
shown mathematically by considering in theorem 1 that 

13 0P = , 14 0P = , 15 0P =  and 16 0P = . Then, the inequality 
(22) can be rewritten as: 
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with ( )1,1 1
1 1

T T TA X XA B K K B XXµµ µ µ µ µ µ µδ δ −Φ = + + + , 
( )2,2

6 6
TP A A Pµ µ µΦ = +  and ( ) ( )3,3 2 2 TTH D D Hµµ µ µ µ µΦ = − − . 

Replacing ( )ye t  by its expression given in (24), one obtains 
the LMI conditions of theorem 5.4 [8]. 

IV. SIMULATION RESULTS 
In order to show the effectiveness and the applicability of the 
proposed approaches, let us consider the system (2) with  
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, 1 0.8D = − , 

2 0.5D = − , ( )( )
( )( )

1

1 tanh 0.5
2

u t
u tµ

− −
= and 

( )( ) ( )( )2 11u t u tµ µ= − . a  and b  are two model parameters. 
Firstly, our aim is to compare the conservatism of the 
approach given in theorem 5.4 of [8] and the proposed 
theorem 1 and corollary 1.  
Let us consider [ ]2 0.6a∈ − −  and [ ]2 0b∈ − , using 
Matlab LMI Toolbox  the obtained feasibility fields are 
presented in Fig.2 and show that the proposed approaches are 
less conservative than in [8]. 

 
Fig.2. Feasibility fields ;   Theorem 1, ×  Corollary 1 and   

Theorem 5.4 of [8] 

Secondly, in order to illustrate the effectiveness of the fault 
tolerant controller compared to a classical one, a passive FTC 
controller is designed as described in appendix, in order to 
minimize the L2-gain from the fault to the tracking error. The 
obtained results are compared with those issued from the 
proposed active FTC controller. 

In the fault free case, it can be seen on Fig.3 that both passive 
and active FTC controllers ensure the system stabilization. The 
simulation is ran for 2a = − , 0.5b = − , a nominal input given 
by ( ) ( )( )sin cos 2 0.5u t t t=  and the LMI problem is solved 
with Matlab LMI Toolbox. 

In order to compare passive and active FTC control facing the 
occurrence of a fault, a piecewise constant fault ( )f t , 
occurring at 4t =  is considered. The simulation results are 
displayed on the Fig. 4, 5, 6, 7. The effectiveness of the 
proposed FTC design can be seen on Fig.4, whereas the passive 
FTC fails to ensure trajectory tracking when ( )f t  occurs. 

V. CONCLUSION 
In this paper, a trajectory tracking fault tolerant controller 
design approaches have been proposed for faulty T-S models 
with measurable premise variables. The objective is to ensure 
the tracking between the faulty system states and one of 
healthy reference model. The proposed LMI approaches are 
less conservative. This improvement is due to the considered 
“virtual dynamics” on the output error allows introducing 
slack variables in the Lyapunov function and decoupling the 
observer gains and the system matrices.  



The efficiency of the FTC law comparing with classical one is 
illustrated with a numerical T-S model whose input is 
corrected by a fault. 
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Fig.3. Comparison of the reference model states (no fault), the 

system states with FTC (theorem 1) and system states with 
classical control law (theorem 2). 

 
Fig.4. Comparison of the reference model state (no fault), the 

faulty system state with FTC (theorem 1) and the faulty system 
state with classical control law (theorem 2). 

 
Fig.5. Estimation errors 

 
Fig.6. Fault and its estimation  

 
Fig.7. Nominal control input and FTC input  



 
Fig.8. Membership function evolution  

VI. APPENDIX. CLASSICAL CONTROLLER DESIGN 
APPROACH 

The classical controller design methodology is based on the 
following scheme. 
 
 
 
 
 
 

 
 

Fig.9. Classical controller design scheme 
 

The system state representation is given by:  

 
( ) ( )( ) ( ) ( ) ( )( )( )
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 (25) 

Let us define the state and output tracking errors between (2) 
and (25) by ( ) ( ) ( )ne t x t x t= −  and ( ) ( ) ( )nt y t y tε = −  
respectively. To ensure the tracking of the reference model, 
we consider the following control law ( ) ( )p pu t K tε= . 

Introducing a “virtual dynamic” on ( )tε , one can obtain: 
 
 ( ) ( ) ( )Ee t e t f tµ µ= Γ −Λ  (26) 

where 
1 0
0 0
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. 

The LMI conditions leading to synthesize the controller pK  
under the 2L  norm bound are given in the following theorem 2. 
Theorem 2: The tracking error ( )pe t  asymptotically 

converges to zero if there exists some matrices 1 1 0TP P= ≥ , 

3P  and pK and a positive scalar γ  such that the following 
LMI are satisfied for all 1,2,..,i r=  

 

2 2 2
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 (27) 

where 1 1
T

i i iP A A P IΘ = + + . 
 
Proof: Let us consider the following candidate quadratic 
Lyapunov function: 
 ( )( ) ( ) ( )TV e t e t EPe t=  (28) 
 
with 0TEP P E= ≥  (29) 
 

we consider 1

2

0
0
P

P
P

 
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 

. According to (29), one can find 

that 1 1 0TP P= ≥ . It is well known that the L2-gain from ( )f t  

to ( )e t  is bounded by γ  if [13]: 
  
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 0T T T Te t EPe t e t EPe t e t e t f t f tγ+ + − <  (30) 

 
Considering  (29) and substituting (26) in (30), one can obtain: 
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The mathematical development of (31) with (26) and (29)
leads to:  
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 (32) 
 
Applying Lemma 1 then Schur complement on (32), the 
sufficient LMI conditions proposed in theorem 2 holds. 
 
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