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Motivation and proposition

Design a joint state and (multiplicative sensor) fault observer for nonlinear
systems
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Proposition

1. Rewrite the nonlinear system into a T-S model with unmeasurable premise
variables

2. Describe the time-varying sensor fault using the sector nonlinearity approach
3. Establish the convergence conditions of the state and fault estimation errors
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1. Problem statement

T-S approach for modeling

e The Takagi-Sugeno structure

X0 = D mlED)AX() + Bu(t))
y(t) = D mlE)Cx(t) + Du(t))
i=1

x(t) € R™ is the system state variable, u(t) € R™ is the control input and
y(t) € R™ is the system output. £(t) € RY is the decision variable vector.
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1. Problem statement

T-S approach for modeling

e The Takagi-Sugeno structure

X0 = D mlED)AX() + Bu(t))
y(t) = D mlE)Cx(t) + Du(t))
i=1

x(t) € R™ is the system state variable, u(t) € R™ is the control input and
y(t) € R™ is the system output. £(t) € RY is the decision variable vector.

¢ Nonlinear interpolation between linear submodels with adequate weighting
functions p;(£(t)) satisfying the convex sum property

S le(t) =1

0 <pm(g(H) <1, i=1,....n Vt
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1. Problem statement

How to systematically obtain a T-S model fom a given NL system?

e Sector nonlinearity transformation: a systematic procedure which guarantees
an exact model construction for nonlinear systems with bounded
nonlinearities.
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1. Problem statement

How to systematically obtain a T-S model fom a given NL system?

e Sector nonlinearity transformation: a systematic procedure which guarantees
an exact model construction for nonlinear systems with bounded
nonlinearities.

e The nonlinear systems is rewritten as a quasi-LPV model. The T-S form is
obtained by using the convex polytopic transformation.
Each vertex defines a linear submodel and the nonlinearities are rejected into
the weighting functions.

x(t) = £(x(1), u(t)
NL{ y(t) = f,(x(1), u(t))

=

| () = A, u(D)x(t) + Bx(t), u(t)u(t)
Q“as"LPV{ y(t) = C(x(t), u(t)x(t) + D(x(D), u(t)u(t) ~
M) = S m(E)AX() + Bu(t))
T-S model =1
Yty = S m(e)(Cx() + Du(b)

=t CRAN
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1. Problem statement

Takagi-Sugeno system with multiplicative time-varying sensor faults

X(t) =Y milx()(Ax(t) + Bu(t), y(t) = C(t)x(t) = (Iln + F(D)Cx(t) (1)

i=1
m

F(t) = Z fi(t)F;  with F; matrices of dimension R™*™ and where the element
j=1

of coordinate (j, ) is equal to 1 and 0 elsewhere.
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1. Problem statement

Takagi-Sugeno system with multiplicative time-varying sensor faults

X(t) =Y milx()(Ax(t) + Bu(t), y(t) = C(t)x(t) = (Iln + F(D)Cx(t) (1)

i=1
m
F(t) = Z fi(t)F;  with F; matrices of dimension R™*™ and where the element
j=1
of coordinate (j, ) is equal to 1 and 0 elsewhere.

Polytopic decomposition of the sensor faults f(t)

B(t) = I (GO + i (HDE,  6(t) € [, 1]

fi(t) — f2

AGm) = ’ffj)_ 7 { 73 () + FE((1) = 1, vt
1 — Ij .

THUG)EE f")? ﬂg) 0< () <1, i=1,2
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1. Problem statement

Problem statement

The time-varying matrice F(t) is expressed as:

F(ty = S )
j=1 k=1
2m
= > w(f())F;
j=1
with .
() = [T e (1)
k=1
’?/ = Z f:;(F/
k=1

where the [i;(f(t)) satisfy the convex sum property.
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1. Problem statement

Equivalent representation of the system

{5((?) = g(x(®),u(t))
y(t) = h(x(t),u(t), f(t))

{)’((t) = Zu,(x )(Aix(t) + Biu(t))
y(t) = (/m+F 1)Cx(t)

x(t) = Zu:(x )(Aix(t) + Biu(t))

y(t) = Z (1) Cix (1)

=
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2. Observer design

Joint state and time-varying faults observer

u y r
Syst L X(t) = 21 pi(X(6)(AX(t) + Biu(t)

‘ oy ”+L,-<y( t) - (1))

— ¢ f)—Zu: 0)(—eif(t)

Figure: Joint state and time-varying fault +K(y( ) —¥(1)))

observer
y(t) = Z AiFD)C&(1)
j=1

Unknown gain matrices L; € R ™*™ K, € R ™™ and «; € R "™ must be
computed to minimize the £, gain from f(t) to the state and fault estimation
errors:

o ex(t) = x(t) — X(t) the state estimation error
o e(t) = f(t) — f(t) the time-varying fault estimation error
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2. Observer design

Difficulty

The estimation problem is not trivial since the weighting functions of the system
depend on f(t) and x(t), while those of the observer depend on their estimate
f(t) and X(t).

X(1) Zu/ (D)(Aix(t) + Biu(1))
system N
y(t) = Zﬁ/(f(f))C/X(f)
Z/t, t) + Biu(t) + Li(y(t) — 9(1)))
observer 4 1(t) = ZH/ X(0)(—aif () + Ki(y(t) — 9(1)))

y(t) = Z (1) Cx(t)
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2. Observer design

Solution: rewritting of the state equation

Based on the convex sum property of the weighting functions, rewrite the system
equation as an uncertain-like system:

2 [i(X ) + Biu(t)) + (i(x(t)) — mi(X(1))) (Aix(t) + Biu(t))]
y() =3 | w(F0) Cix (1) + ((F()) — F(F(1)) Gy (1)
= AC(t)

x(t) = Zui(f((f))((Af + AA)x(8) + (B + AB(t))u(1))

y(t) = ZM/ (D)(C + AC(t)x(1)

r r

DA =D (mi(x(1) — wi(R(O)) A AB(t) = > (mi(x(t)) — pi(X(1))) B;

i=1 i=1 Er
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2. Observer design

Rewritting of the state equation

x(t) = Z#r () (A + AA(D))x(1) + (B + AB(t))u(t))

System
y(t) = Zm ))(Ci+ AC(D))x(t)
= ZN" X(O)(Ax(t) + Biu(t) + Li(y(t) = ¥(1)))
Observer t)—Zu:(x f(t) + Ky () = 7(1))

Zﬂj(f C/X(t
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CRAN

2. Observer design

Estimation errors dynamics

)= > mEOEFO) (A~ LiC)ex(t)+

(AA() — LAC(H)x(t) + AB(t)u(t))

é(t) = ZZM D) (F(1)(~KiCrex(t) — aven(t)
i=1 1
" f(t) — KIAC(t)x(t) + cuf(t))
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2. Observer design

Estimation errors dynamics

r 2m
e(t) = D5 i) a(F0) (A — LiC)ex(t)+
i=1 j=1
@mn_uAammn+Amnmm
(1) = D> i) (1) (—KiCiex(t) — cven(t)
i=1 j=1

f(t) — KAC(HX(D) + aif(t))

|
Let us consider the augmented vectors

ext)= (el ef(n))" and w(t)=(x"() (1) () (1))

ro2m

ea(t) = > > wi(X(O)E(F() (Pyea(t) + Wi(t)w(t)) @)

i=1 j=1
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2. Observer design

Augmented system dynamic

6a(t) = ZZM: () (D)) (Pjea(t) + Vil t)w(D))

i=1 j=1
Py A"_Ija' 0
o ~KC o
vi(t) = AA(t)— LAC(t) 0 0 AB(1)
o —Kact)y w10

The objective is to guarantee the stability of the augmented system and the
boundedness of the transfer from the input w(t) to es(t) (to attenuate the effect

of w(t) on the estimation)
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2. Observer design

Augmented system dynamic

6a(t) = ZZM: () (D)) (Pjea(t) + Vil t)w(D))

i=1 j=1
Ai — 1161 0
-KC -

[ AA(-LAC(t) O 0 AB()
Vil = ( “KAC(t) |0 )

The objective is to guarantee the stability of the augmented system and the
boundedness of the transfer from the input w(t) to es(t) (to attenuate the effect
of w(t) on the estimation)

£
[

AA(t) = AXA(t)Ea, AB(t) = Bxs(t)Eg and AC(t) = Cxc(t)Ec are time-varying
matrices such that £} (£)Za(t) < I, LE(H)Zp(t) < land TL(H)Zc(t) </
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2. Observer design

Procedure

1. Consider a quadratic Lyapunov function V(ea(t)) = el (t)Pea(t), P=PT >0
2. Consider the L; criterion

V(ea(t)) + el (t)ea(t) — w' ()aw(t) < 0 3)
I, = diag(r's), I's < B, fork =0,1,2,3

o guarantee the stability of e;(t) and a bounded transfer from w(t) to ea(t).
o T, allows to attenuate the transfer of some w(t) components to ea(t) components

Condition to solve

ro2m R T ¢;P+P¢i'+I2nX
> Y o) (&) ( ’ o)

i=1 j=1 \U,-T(t)P ‘ -r /

PUi(D) ( ea(t) >< 0
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2. Observer design: theorem

There exists a joint robust state and multiplicative sensor fault observer for the
considered TS model with an £, gain from w(t) to es(t) bounded by 3 (5 > 0) if
there exists matrices Py = P1 >0, P = P2 >0, M3, M4 >0, Ki, Ri
and scalars 3, A\, Aic > 0, A\o¢c > 0 and \g > 0 solutions of the optimization
problem (4) under LMI constraints (5) and (6)

_ min B “4)
P1,P2, R, Kjs@is A, Me, Aac A
e < Blfork=1,2,3,4 (5)
Q' -C’kKl 0o 0 0 0 PA PB RC 0
* Q2 0 @ P O 0 0 0 KiC
* * Q¥ 0 0 0 0 0 0 0
* * * —Io 0 0 0 0 0 0
* * * x -3 0 0 0 0 0 <0 (8)
* * * * * O;’e 0 0 0 0
* * * * * x =X\ 0 0 0
* * * * * * 0 gl 0 0
* * * * * * 0 0 Xl 0
* * * * * * 0 0 0 —Xoc!
Q' = P1A;+ ATP; — R,.C;— CTR] + Iy, O =—wi —a] +n

Q%8 = -1+ X E,ZEA + )\10EgEC + AchgEC Q%6 = -4+ )‘BE,;—EB
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3. lllustrative example

Process description

e A reduced form of an activated sludge reactor model with modelling errors is
considered.

e The process consists in mixing used waters with a rich mixture of bacteria in
order to degrade the organic matter.

Nonlinear system

sa(t) = MR —x(tu(®)

Jelf) = =020 1 (d — (D) ulD)

x1(t) and x2(t) represent the biomass and the substrat concentration
respectively.

u(t) is the dwell-time in the treatment plant.
The biomass concentration is measured (y(t) = x1(t))
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3. lllustrative example

Modelling errors

e Parameters a, b, ¢, d have been identified and setto a = 0.5, b = 0.07,
c=0.7etd=2.5.

e It is assumed that a bounded multiplicative sensor fault f;(t) affects the
output y(t) such that:

y(t) =1+ H(0)x (1)
with min(f (1)) = f2 = 0.125 and max(f;(t)) = ] = 0.625.
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3. lllustrative example

Modelling errors

e Parameters a, b, ¢, d have been identified and setto a = 0.5, b = 0.07,
c=07etd=25.
e It is assumed that a bounded multiplicative sensor fault f;(t) affects the

output y(t) such that:
y() = (1 +A(1)x (1)

with min(f (1)) = f2 = 0.125 and max(f;(t)) = ] = 0.625.

T-S representation

Starting with the nonlinear system, a quasi-LPV state representation is
established. The T-S form is obtained by using the sector nonlinearity
transformation.
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3. lllustrative example

Modelling errors

e Parameters a, b, ¢, d have been identified and setto a = 0.5, b = 0.07,
c=07etd=25.
e It is assumed that a bounded multiplicative sensor fault f;(t) affects the

output y(t) such that:
y() = (1 +A(1)x (1)

with min(f (1)) = f2 = 0.125 and max(f;(t)) = ] = 0.625.

T-S representation

Starting with the nonlinear system, a quasi-LPV state representation is
established. The T-S form is obtained by using the sector nonlinearity
transformation.

T-S model of the process

X(t) = Zu/ ()(Ax(1) + Bu(t)); y(1) Zm
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6. lllustrative example
e Nominal output ys(t) : Cx(t)
e Faulty system output : y(t) : C(t)x(t)

The output deviation caused by the time-varying parameter (multiplicative sensor
fault)

M ' ' ' ' ' " [—with fault
—without fault]

0 50 100 150 200 250 300 350 400

Figure: Output with and without f; (t)

CRAN

CIRAN State and multiplicative sensor fault estimation 18/21 S. Bezzaoucha, B. Marx, , J. Ragot



6. lllustrative example

Initial conditions xo = ( 0.1 1.5 ), %3(0) = ( 0.09 2.3 0 ) for the joint state
and fault observer

—x,0
7x2(l)
- xl(t) estimate|
o xz(l) estimate|

0 50 100 150 200 250 300 350 400

Figure: System states and their estimates
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Actual and estimated time-varying parameter

0.7,

[8] 50 100 150 200 250 300 350 400

Figure: Time-varying fault f; (t) (blue) and its estimate (red)
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Conclusions and perspectives

Conclusions

¢ A new systematic procedure was presented to deal with the state and
multiplicative sensor fault estimation for nonlinear systems.

e Based on a T-S representation (by the sector nonlinearity approach).

e The estimation problem and observer synthesis are expressed in terms of
LMI optimization.

e No assumption on the time-varying parameter and/or the system
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Conclusions and perspectives

Conclusions

¢ A new systematic procedure was presented to deal with the state and
multiplicative sensor fault estimation for nonlinear systems.

e Based on a T-S representation (by the sector nonlinearity approach).

e The estimation problem and observer synthesis are expressed in terms of
LMI optimization.

e No assumption on the time-varying parameter and/or the system

e Practical application (Benchmark of a Wastewater Treatment Plant)
e Use the results for Fault Tolerant Control (FTC)
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