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1. INTRODUCTION

Due to an increasing demand for higher performances, safety
and reliability, model-based fault diagnosis (detection and iso-
lation) is of practical importance and has received considerable
interest these past years. The state estimation problem can be
viewed as the heart of control systems and model-based diag-
nosis (Chen and Patton [1999]), (Basseville [1998]). The design
of observers, reconstructing state variables out of a limited set
of measurements, is a possible approach for dealing with the
measurement problem. But, due to time-varying behaviour of
dynamical processes, the introduction of time-varying parame-
ters in the system models leads to a higher level of complexity
with more challenging problems in estimation. In this case,
conventional observers essentially developped for time invari-
ant systems cannot directly be used, and so-called adaptive
observers developed for joint state and unknown parameter
estimation has to be implemented.
However, the difficulty in estimating such models is augmented
by the fact that one has no idea regarding the way that the
parameters may vary. In the present work, a focus is made
on the linear time varying parameter (LPV) systems where the
parameter variations are mostly inaccessible (non measurable)
and may be considered as faults (acting as disturbances or/and
uncertainties).
Some methods have been published in this subject. They as-
sume the existence of some Lyapunov function satisfying par-
ticular conditions and there is no systematic way to check their
applicability to a given system (Zhang and Xu [2001]), (Raja-
mani and Hedrich [1995]), (Besançon [2000]), (Cho and Ra-
jamani [1997]). Other methods make assumption that the esti-
mated parameters are constant during the identification process.
Control algorithms exploiting this type of parameter need to be
updated on-line in order to increase their performances (Kenne
et al. [2008]). In some bioprocess, the concept of elemental
balances of some components in the bioreactor is used to obtain
indirect measurements of various time-varying parameters. The
reconstruction of the immeasurable state variables and of the
time-varying parameters is carried out on the basis of Extended

Kalman filter algorithm using the indirect measurements. But
these algorithms are difficult to implement in practice, since
very few sensors are able to provide reliable and on-line mea-
surements of state variables (Lubenova [1999]). For discrete
time systems, recursive algorithm design for joint state and
parameter estimation can be found, but with the assumption
of some canonical form for the system matrices (Guyader and
Zhang [2003]). A natural idea for joint state and parameter
estimation is to apply the Kalman filter to the extended system
obtained by appending the unknown parameter into the state
vector. However, the application of classical results requires
uniform complete observability, which is difficult to chek for
the extended system (Guyader and Zhang [2003]).
In the present paper, a systematic procedure is presented to deal
with the state and parameter estimation for time-varying sys-
tems. It consists in transforming the original system into a poly-
topic linear model based on the sector nonlinearity approach
and the convex polytopic transformation. This transformation
has the major interest to represent exactly the system without
any loss of informations since the considered nonlinearities are
bounded (each parameter varies between two known values).
Up to our knowledge, this is the first contribution where the
time-varying problem is treated is such a way.
The main advantage is to give a systematic procedure in order to
rewrite the nonlinearities and establish the convergence condi-
tions of the state and parameter estimation errors, which will be
expressed in linear matrix inequalities (LMI) formulation using
the Lyapunov method.
The paper is organized as follows. Section 2 introduces the
polytopic structure for modelling and some preliminary results.
It is followed by the representation of the nonlinear time-
varying parameter by a polytopic structure in section 3. In
section 4, observers for joint state and unknowm time-varying
parameters estimation are implemented. In section 5, an exten-
sion for the case where a noise affects the output measurement
with filter synthesis is applied in order to attenuate the influence
of the parameter variation and the measurement noise on the
state and parameter estimation errors. A numerical example and



some simulation results are given in section 6. Conclusions are
detailed in section 7.

2. PRELIMINARIES: POLYTOPIC LINEAR STRUCTURE
FOR MODELING

The polytopic model may have different names, such as fuzzy
model (Takagi-Sugeno model), multi-model, local model net-
works, ect. It allows the representation of the nonlinear behav-
ior of systems by the interpolation of a set of linear submodels.
Each submodel contributes to the global behavior of the nonlin-
ear system through a weighting function µi(ξ (t)) (Tanaka and
Wang [2001]). The polytopic structure is given by

ẋ(t) =
r

∑
i=1

µi(ξ (t))(Aix(t)+Biu(t))

y(t) =
r

∑
i=1

µi(ξ (t))(Cix(t)+Diu(t))
(1)

where x(t) ∈ Rnx is the system state variable, u(t) ∈ Rnu is the
control input and y(t) ∈ Rm is the system output. ξ (t) ∈ Rq is
the decision variable vector assumed to be measurable (as the
system output) or known (as the system input). The weighting
functions µi(ξ (t)), also known as the scheduling functions, of
the r submodels satisfy the convex sum property

r

∑
i=1

µi(ξ (t)) = 1

0≤ µi(ξ (t))≤ 1, i = 1, . . . ,r
(2)

In the remaining of the paper, the following lemma is used:
Lemma 1. Consider two matrices X and Y with appropriate
dimensions, a time-varying matrix ∆(t) and a positive scalar
ε . The following property is verified

XT
∆

T (t)Y +Y T
∆(t)X ≤ εXT X + ε

−1Y TY (3)
for ∆T (t)∆(t)≤ I.

3. POLYTOPIC MODELLING OF TIME-VARYING
PARAMETERS

The main contribution of this work is to jointly estimate the
state variables and the time-varying parameters of a LPV sys-
tem, using the PLM representation. For that, each time-varying
parameter is rewritten under a particular form.

3.1 Scalar time varying parameter

Let us consider the time-varying linear system represented by
equation (4) {

ẋ(t) = A(t)x(t)+B(t)u(t)
y(t) = Cx(t) (4)

with {
A(t) = A0 +θ(t)A1, θ(t) ∈ [θ ,θ ]
B(t) = B0 +θ(t)B1

(5)

A0, A1, B0 and B1 are known matrices with suitable dimensions.
θ(t) ∈ R is a time-varying parameter, it is non measurable but
bounded and affects both matrices A and B.
Using the so-called sector nonlinearity approach, the bounded
parameter θ(t) can be rewritten as:

θ(t) = µ1(θ(t))θ +µ2(θ(t))θ (6)
with


µ1(θ(t)) =

θ −θ(t)
θ −θ

µ2(θ(t)) =
θ(t)−θ

θ −θ

(7)

such that the weighting functions µ1(θ(t)) and µ2(θ(t)) verify
the convex sum property (2) with r = 2.
Replacing (6) and (5) in equation (4), the initial linear system
with the time-varying parameter θ(t) is now expressed as a
PLM, such that :

ẋ(t) =
2

∑
i=1

µi(θ(t))(Aix(t)+Biu(t)) (8)

with {
A1 = A0 +θ A1, B1 = B0 +θ B1
A2 = A0 +θ A1, B2 = B0 +θ B1

(9)

3.2 Extension to the vector case

Let us now consider the time-varying linear system represented
by (10) with n parameters θi(t){

ẋ(t) = A(t)x(t)+B(t)u(t)
y(t) = Cx(t) (10)

with 
A(t) = A+

n

∑
j=1

θ j(t)A j

B(t) = B+
n

∑
j=1

θ j(t)B j

(11)

Remark 1. In (11), it is supposed that the matrices A(t) and B(t)
depend on the same parameters. If a parameter θ j(t) does not
affect A(t) (resp. B(t)), then the corresponding matrix Ā j (resp.
B̄ j) is null.

Each parameter θi(t) is expressed as:

θi(t) = µ
1
i (θi(t))θ i +µ

2
i (θi(t))θ i (12)

with the definitions:
µ

1
i (θi(t)) =

θ i−θi(t)
θ i−θ i

µ
2
i (θi(t)) =

θi(t)−θ i

θ i−θ i

(13)

satisfying the constraint:

µ
1
i (θi(t))+µ

2
i (θi(t)) = 1, ∀t, i = 1, . . . ,n

Finally, by replacing (11) and (12) in equation (10), we get: ẋ(t) =
n

∑
i=1

2

∑
j=1

µ
j

i (θi(t))(A
j
i x(t)+B j

i u(t))

y(t) = Cx(t)
(14)

A1
i = A0 +θ i A1

i , B1
i = B0 +θ i B1

i

A2
i = A0 +θ i A1

i , B2
i = B0 +θ i B1

i
(15)

4. STATE AND TIME-VARYING PARAMETER
OBSERVER

Based on the obtained PLM, a simultaneous state and parameter
observer may be designed and implemented. An L2 attenuation
is proposed to minimize the effect of the time-varying param-
eters on the state estimation errors, since these parameters are



unknown.
The state and parameter observer is taken as the following

˙̂x(t) =
n

∑
i=1

2

∑
j=1

µ
j

i (θ̂i(t))(A
j
i x̂(t)+B j

i u(t))+L j
i (y(t)− ŷ(t))

˙̂
θ(t) =

n

∑
i=1

2

∑
j=1

µ
j

i (θ̂i(t))(K
j

i (y(t)− ŷ(t))−α
j

i θ̂(t))

ŷ(t) =Cx̂(t)
(16)

where L j
i ∈ R nx×m, K j

i ∈ R n×m and α
j

i ∈ R n×n are the gain
matrices to be determined in such a way that simultaneously
the observer state and parameter converge to the system state
and parameter.
It may be noted here that the estimation problem is not trivial
since the activation functions in the system (14) depend on θ(t),
while those of the observer (16) depend on its estimate θ̂(t).
Let us define the state estimation error ex(t) as

ex(t) = x(t)− x̂(t) (17)
Its dynamics cannot be directly computed from (17) since
the weighting functions depend on the unmeasurable variable
(θ(t)). That is why, based on the convex sum property of
the weighting functions, the state equation (14) is rewritten as
follows

ẋ(t) =
n

∑
i=1

2

∑
j=1

µ
j

i (θ̂i(t))
(

A j
i x(t)+B j

i u(t)
)
+

n

∑
i=1

2

∑
j=1

(
µ

j
i (θi(t))−µ

j
i (θ̂i(t)

)(
A j

i x(t)+B j
i u(t)

) (18)

This form allows a better comparison of x(t) with x̂(t), since
µ

j
i (θ̂i(t)) appears in the two expressions (16) and (18).

Let us define:

∆Ai(t) =
2

∑
j=1

(µ j
i (θi(t))−µ

j
i (θ̂i(t)))A

j
i

= AiΣAi(t)EA

∆Bi(t) =
2

∑
j=1

(µ j
i (θi(t))−µ

j
i (θ̂i(t)))B

j
i

= BiΣBi(t)EB

(19)

with

Ai =
[

A1
i A2

i

]
, ΣAi(t) =

(
δ

1
i (t)Inx 0

0 δ
2
i (t)Inx

)
,

Bi =
[

B1
i B2

i

]
, ΣBi(t) =

(
δ

1
i (t)Inu 0

0 δ
2
i (t)Inu

)
,

EA = [ Inx Inx ]
T
, EB = [ Inu Inu ]

T

(20)

Thanks to the property (2), for i = 1,2, it holds{
δ

j
i (t) = µ

j
i (θi(t))−µ

j
i (θ̂i(t))

−1≤ δ
j

i (t) ≤ 1
(21)

which implies from definition (20)

Σ
T
Ai
(t)ΣAi(t)≤ I, Σ

T
Bi
(t)ΣBi(t)≤ I (22)

The system (18) is then written as an uncertain-like system
given by (see Ichalal et al. [2009]):

ẋ(t)=
n

∑
i=1

2

∑
j=1

µ
j

i (θ̂i(t))
(
(A j

i +∆Ai(t))x(t)+(B j
i +∆Bi(t))u(t)

)
(23)

From equations (23), (16) and (17), the dynamics of the state
estimation error are given by

ėx(t) =
n

∑
i=1

2

∑
j=1

µ
j

i (θ̂i(t))(
(A j

i −L j
i C)ex(t)+∆Ai(t)x(t)+∆Bi(t)u(t)

) (24)

Let us now define the parameter estimation error eθ (t) as

eθ (t) = θ(t)− θ̂(t) (25)
From equation (16), the dynamics of this error is given by

ėθ (t)=
n

∑
i=1

2

∑
j=1

µ
j

i (θ̂i(t))
(

θ̇(t)−K j
i Cex(t)+α

j
i θ(t)−α

j
i eθ (t)

)
(26)

Due to the coupling between the errors eθ (t) and ex(t), it is
convenient to consider the augmented vectors ea(t) and ω(t)

ea(t) =
(

ex(t)
eθ (t)

)
, ω(t) =

 x(t)
θ(t)
θ̇(t)
u(t)

 (27)

in order to obtain the augmented system describing the state
and parameter estimation errors.

ėa(t) =
n

∑
i=1

2

∑
j=1

µ
j

i (θ̂i(t))
(

Φ
j
i ea(t)+Ψ

j
i (t)ω(t)

)
(28)

with

Φ
j
i =

(
A j

i −L j
i C 0

−K j
i C −α

j
i

)
Ψ

j
i (t) =

(
∆Ai(t) 0 0 ∆Bi(t)

0 α
j

i I 0

) (29)

Our objective is to design the joint state and parameter observer
with a minimal L2-gain of the transfer from ω(t) to ea(t).
The computation of the observer gains is detailed in the next
theorem.
Theorem 1. There exists a joint robust state and parameter
observer (16) for a linear time-varying parameter system (10)
with an L2-gain from ω(t) to ea(t) bounded by β if there exists
P0 = PT

0 > 0, P1 = PT
1 > 0, β > 0, λ1i, λ2i, Γ0

2, Γ1
2, Γ2

2, Γ3
2 > 0,

α
j
i , F j

i and R j
i solution of the optimization problem (30) under

LMI constraints (32), for i = 1, . . . ,n and j = 1,2:
min

P0,P1,R
j
i ,F

j
i ,α

j
i ,λ1i,λ2i,Γ

0
2,Γ

1
2,Γ

2
2,Γ

3
2

β (30)

Γ
k
2 < β I, for k = 0,1,2,3 (31)

The observer gains are given by
L j

i = P−1
0 R j

i
K j

i = P−1
1 F j

i
α

j
i = P−1

1 α
j
i

(33)

Proof 1. Let us consider the following quadratic Lyapunov
function

V (ea(t)) = eT
a (t)Pea(t), P = PT > 0 (34)

its time derivative is given by

V̇ (t) =
n

∑
i=1

2

∑
j=1

µ
j

i (θ̂i(t))(eT
a (t)((Φ

j
i )

T P+PΦ
j
i )ea(t)

+eT
a (t)PΨ

j
i (t)ω(t)+ω

T (t)(Ψ j
i )

T (t)Pea(t))

(35)

Considering equation (28), the goal of the observer design is
to attenuate the effect of the input ω(t) on ea(t). So, in order





P0A j
i +(A j

i )
T P0−R j

i C−CT (R j
i )

T + Inx −CT (F j
i )

T 0 0 0 0 P0Ai P0Bi

∗ −α
j
i − (α j

i )
T + In 0 α

j
i P1 0 0 0

∗ ∗ −Γ
0
2 +λ1ET

A EA 0 0 0 0 0
∗ ∗ ∗ −Γ

1
2 0 0 0 0

∗ ∗ ∗ ∗ −Γ
2
2 0 0 0

∗ ∗ ∗ ∗ ∗ −Γ
3
2 +λ2ET

B EB 0 0
∗ ∗ ∗ ∗ ∗ ∗ −λi1I 0
∗ ∗ ∗ ∗ ∗ ∗ 0 −λi2I


< 0 (32)

to guarantee the stability of (28) and the boundedness of the
transfer from ω(t) to ea(t), the following criterion is considered

V̇ (t)+ eT
a (t)ea(t)−ω

T (t)Γ2ω(t)< 0 (36)
with

Γ2 = diag(Γk
2), Γ

k
2 < β I, for k = 0,1,2,3 (37)

such that Γ2 allows to attenuate the transfer of some ω(t)
components to ea(t) components.
From (35), (36) becomes:

n

∑
i=1

2

∑
j=1

µ
j

i (θ̂i(t))
(

ea(t)
ω(t)

)T

((
(Φ j

i )
T P+PΦ

j
i + I PΨ

j
i (t)

(Ψ j
i (t))

T (t)P −Γ2

))(
ea(t)
ω(t)

)
< 0

(38)

The main difficulty for satisfying (38) is the presence of time-
varying terms. Then, the idea is to isolate and bound these
terms. For that purpose, a block diagonal structure for the
Lyapunov matrice P is considered:

P = diag(P0,P1) (39)
From (25), (37) and (39), (38) is explicited as

n

∑
i=1

2

∑
j=1

µ
j

i (θ̂i(t))
(

Q j
i +Qi(t)+QT

i (t)
)
< 0 (40)

with:

Q j
i =


(Q j

i )11 −CT (K j
i )

T P1 0 0 0 0
∗ (Q j

i )22 0 P1α
j

i P1 0
∗ ∗ −Γ

0
2 0 0 0

∗ ∗ ∗ −Γ
1
2 0 0

∗ ∗ ∗ ∗ −Γ
2
2 0

∗ ∗ ∗ ∗ ∗ −Γ
3
2

 (41)

(Q j
i )11 = P0A j

i +(A j
i )

T P0−CT (L j
i )

T P0−P0L j
i C+ Inx

(Q j
i )22 =−P1α

j
i − (α j

i )
T P1 + I

(42)

Based on (19) and (22), the time-varying term of (40) can be
expressed as:

Qi =


P0Ai

0
0
0
0
0

( 0 0 ΣA(t)EAi 0 0 0 )

+


P0Bi

0
0
0
0
0

( 0 0 0 0 0 ΣB(t)EBi )

(43)

Using Lemma 1, there exists positive scalars λ1i and λ2i such
that

Qi(t)+QT
i (t)<


Q1

i 0 0 0 0 0
0 0 0 0 0 0
0 0 λ1iET

A EA 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 λ2iET

B EB

 (44)

with:
Q1

i = λ
−1
1i P0AiA

T
i P0 +λ

−1
2i P0BiB

T
i P0 (45)

From inequality (44) and with the variable changes (33), the
LMI (32) implies (40) and then implies the L2-gain attenuation
of the transfer from ω(t) to ea(t), which achieves the proof.

In order to improve the obtained results, the conditions (32)
may be relaxed using the convex sum property (2). Since

µ
2
i (t) = 1−µ

1
i (t) (46)

(23) becomes:

ẋ(t)=
n

∑
i=1

2

∑
j=1

µ
1
i (θ̂i(t))

(
(A j

i +∆Ai(t))x(t)+(B j
i +∆Bi(t))u(t)

)
(47)

∆Ai(t) = δ
1
i (t)(A

1
i −A2

i )

∆Bi(t) = δ
1
i (t)(B

1
i −B2

i )
δ

1
i (t) = µ

1
i (θ(t))−µ

1
i (θ̂(t))

(48)

Based on the same developments as previously, the following
theorem can be established:
Theorem 2. There exists a robust state and parameter observer
(16) for the linear time-varying parameter system (10) with a
bounded L2 gain β of the transfer from ω(t) to ea(t) (β > 0) if
there exists P0 = PT

0 > 0, P1 = PT
1 > 0, β > 0, Λ1i, Λ2i, Γ0

2, Γ1
2,

Γ2
2, Γ3

2 > 0, α
j
i , F j

i and R j
i solution of the optimization problem

(49) under LMI constraints (51), for i = 1, . . . ,n and j = 1,2:
min

P0,P1,R
j
i ,F

j
i ,α

j
i ,Λ1i,Λ2i,Γ

0
2,Γ

1
2,Γ

2
2,Γ

3
2

β (49)

Γ
k
2 < β I for k = 0,1,2,3 (50)

where Λ1i and Λ2i are matrices (instead of scalars for the
previous development) and where:

ΛAi = (A1
i −A2

i )
T

Λ1i(A
1
i −A2

i )

ΛBi = (B1
i −B2

i )
T

Λ2i(B
1
i −B2

i )
(52)

The observer gains are still given by (33).
Proof 2. The proof is omitted for space limitation but is similar
to the previous one.

5. NOISE MEASUREMENT AND FILTER SYNTHESIS

In order to prove the efficiency of our approach, we consider the
presence of measurement noise. The system is then described
by the following equations:





P0A j
i +(A j

i )
T P0−R j

i C−CT (R j
i )

T + Inx −CT (F j
i )

T 0 0 0 0 P0 P0

∗ −α
j
i − (α j

i )
T + In 0 α

j
i P1 0 0 0

∗ ∗ −Γ
0
2 +ΛAi 0 0 0 0 0

∗ ∗ ∗ −Γ
1
2 0 0 0 0

∗ ∗ ∗ ∗ −Γ
2
2 0 0 0

∗ ∗ ∗ ∗ ∗ −Γ
3
2 +ΛBi 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Λ1i 0
∗ ∗ ∗ ∗ ∗ ∗ 0 −Λ2i


< 0 (51)

{
ẋ(t) = A(t)x(t)+B(t)u(t)
y(t) = Cx(t)+Gb(t) (53)

where b(t) is the noise measurement and matrices A(t) and B(t)
have been already defined in (5).
The state and parameter observer is chosen as:

˙̂x(t) =
n

∑
i=1

2

∑
j=1

µ
j

i (θ̂i(t))(A
j
i x̂(t)+B j

i u(t))+L j
i (y(t)− ŷ(t))

˙̂
θ(t) =

n

∑
i=1

2

∑
j=1

µ
j

i (θ̂i(t))(K
j

i (y(t)− ŷ(t))−α
j

i θ̂(t))

ŷ(t) =Cx̂(t)
(54)

Let us consider the augmented vectors ea(t) and ω(t)

ea(t) =
(

ex(t)
eθ (t)

)
, ω(t) =


x(t)
θ(t)
θ̇(t)
u(t)
b(t)

 (55)

where ω(t) takes now into account the noise b(t).
It follows:

ėa(t) =
n

∑
i=1

2

∑
j=1

µ
j

i (θ̂i(t))
(

Φ
j
i ea(t)+Ψ

j
i (t)ω(t)

)
(56)

with

Φ
j
i =

(
A j

i −L j
i C 0

−K j
i C −α

j
i

)
Ψ

j
i (t) =

(
∆Ai(t) 0 0 ∆Bi(t) −L j

i G
0 α

j
i I 0 −K j

i G

) (57)

Our objective is to attenuate the effect of the parametric vari-
ation and the noise on the state and parameter estimations.
The computation of the observer gains is detailed in the next
theorem.
Theorem 3. There exists a robust state and parameter observer
(54) for a linear time-varying parameters system (53) subject to
noise measurement with a bounded L2 gain β of the transfer
from ω(t) to ea(t) (β > 0) if there exists P0 = PT

0 > 0, P1 =

PT
1 > 0, β > 0, Λ1i, Λ2i, Γ0

2, Γ1
2, Γ2

2, Γ3
2 > 0, Γ4

2 > 0, α
j
i , F j

i
and R j

i solution of the optimization problem (58) under LMI
constraints (60), for i = 1, . . . ,n and j = 1,2:

min
P0,P1,R

j
i ,F

j
i ,α

j
i ,Λ1i,Λ2i,,Γ

0
2,Γ

1
2,Γ

2
2,Γ

3
2

β (58)

Γ
k
2 < β for k = 0,1,2,3,4 (59)

with:
ΛAi = (A1

i −A2
i )

T
Λ1i(A

1
i −A2

i )

ΛBi = (B1
i −B2

i )
T

Λ2i(B
1
i −B2

i )
(61)

The observer gains are given by (33).

Proof 3. The proof for Theorem 3 is based on the same devel-
opment as the two previous results.

6. NUMERICAL EXAMPLE

The proposed approach is illustrated by an academic example.
Let consider the linear time-varying system defined by:

ẋ(t) =
(
A0 +θ1(t)A1

1 +θ2(t)A1
2
)

x(t)+Bu(t) (62)

A0 =

(−0.3 −1 −0.3
0.1 −2 −0.5
−0.1 0 −0.1

)
, A1

1 =

( 0 −1.1 0
0 0 0
0 0 0

)

A1
2 =

( 0 0 0
0 0 0
0 0 −1.1

)
,B =

( 1
0.5
0.25

)
, C =

(
1 0 0
0 0 1

)
Parameters θ1(t) and θ2(t) vary between [0,1].
In order to illustrate the influence of the time-varying param-
eters, fig. 1 represents the states xn(t) of the nominal system
(without varying parameters) i.e. ẋn(t) = A0xn(t)+Bu(t) and
of the time-varying system states xv(t) given by (62). One can
see the state deviation caused by the time-varying parameter.
The system input is depicted in fig. 2.
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Figure 1. Nominal system (blue) -with parametric variation
(red)

Considering a measurement noise defined by a normal distribu-
tion with zero mean and standard deviation 15% of the output
magnitude affecting the system (53) with G = I2, the observer
gains are calculated from theorem 3. The actual and estimated
states and parameters are depicted in fig. 3 and 4. The initial
conditions for the system are taken x0 = ( 2 1 2 ) for the system
and and x̂0 = ( 0 0 0 0 0 ) for the joint state and parameter
observer.





P0A j
i +(A j

i )
T P0−R j

i C−CT (R j
i )

T + Inx −CT (F j
i )

T 0 0 0 0 −R j
i G P0 P0

∗ −α
j
i − (α j

i )
T + In 0 α

j
i P1 0 −F j

i G 0 0
∗ ∗ −Γ

0
2 +ΛAi 0 0 0 0 0 0

∗ ∗ ∗ −Γ
1
2 0 0 0 0 0

∗ ∗ ∗ ∗ −Γ
2
2 0 0 0 0

∗ ∗ ∗ ∗ ∗ −Γ
3
2 +ΛBi 0 0 0
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2 0 0
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Figure 2. System input
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Figure 3. Actual and estimated states
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Figure 4. Time-varying parameters and their estimates

From the depicted figures, one can conclude that, even if the
the measurements are affected by noises, acceptable state and
time-varying parameters estimations are obtained.

7. CONCLUSION

In the present paper, a new systematic procedure is presented to
deal with the state and parameter estimation for time-varying

systems. It consists in transforming the original system into
a Takagi-Sugeno model based on the sector nonlinearity ap-
proach and the convex polytopic transformation. This transfor-
mation has the major interest to exactly represent the system
without any loss of information. Then, it is used for state and
parameter observer design. The observer gains are given by
LMI optimization in order to minimize the L2 gain from the in-
puts to the estimation errors. Relaxed conditions are also given
based on the convex sum property of the weighting functions.
The case with measurement noise is also studied.
As future work, the same approach may be applied for nonlin-
ear system with time-varying parameters.
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