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Abstract— This work addresses the model reference tracking
control problem. It aims to highlight the encoutered difficulties
and the proposed solutions to achieve the tracking objective for
nonlinear systems described by Takagi-Sugeno (T-S) models.
Different control strategies are exposed. Exact state tracking is
proposed and structural conditions for it are given. Approxi-
mate state tracking is also studied. The choice of the reference
model to be tracked is discussed, as well as the criterion to be
minimized to achieve given tracking objectives.

I. INTRODUCTION AND PAPER OUTLINE

The main objective of this work is to deal with reference
model tracking for nonlinear systems described by Takagi-
Sugeno (T-S) models. The T-S models are known to be an
efficient way to deal with the problems of estimation and
control of nonlinear systems by writing them in a polytopic
form. Originally introduced by [1], the T-S representation
allows to exactly describe nonlinear systems, provided that
the nonlinearities are bounded. This is reasonable since state
variables as well as parameters of physical systems are
bounded, and so is the input of the system which may be
considered naturally stable, or equipped with a stabilizing
control (see for example [2] and the references therein).
Despite an abundant literature on stability conditions of T-S
models, few authors have dealt with the tracking problem for
all the state of the system; indeed most of the works deal with
the tracking of the system output, which generally reduces to
some combinations of these variables. One can refer to some
works concerned with state or output feedback with H∞
performances [3], [4] and [5]. The nonlinear tracking control
problem is expressed in terms of Linear Matrix Inequality
(LMI) and is based on the T-S and Parallel Distributed
Compensation (PDC) structures (an L2 tracking performance
related to the tracking error is formulated and a PDC state
feedback control (or output feedback control) is designed.
See [5], [4] for examples). However, in the cited references,
a referred ”suitable” choice for the reference model is made
without any explanations nor details.
The last remark motivated the present study. In fact, either
for the linear case or the nonlinear one, few works detail
the influence of the reference model choice, which is not a
trivial task. In [6] for example, the authors referred to the
Erzberger’s conditions, but with no further explanations. For
these reasons, in the proposed work, a focus is made not
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only on the design control procedure, but also on the tracking
(matching) conditions.
The paper is organized as follows. In section II, the structural
conditions to achieve state tracking are introduced in the T-S
case. These conditions are an extension of the well known
Erzberger’s conditions. Two procedures for state tracking are
considered: for the first one, the controller structure is firstly
fixed and then the structural conditions and the appropriate
gains of the controller are deduced. For the second one, no
prerequisited control law is considered, with the objective to
achieve a null tracking error for both strategies. In section
III, the quadratic optimal control with an extension to the
Model Predictive Control for T-S models are presented.
Simulation examples are given in section IV. Finally, section
V summarizes the obtained results.

II. STRUCTURAL CONDITIONS FOR EXACT STATE
TRACKING FOR T-S SYSTEMS

A. Model and objective

Let us consider the following T-S model [1]:

xk+1 = Ak xk +Bk uk (1)

s.t. xk ∈ Rnx and uk ∈ Rnu with:

Ak =

r∑
i=1

µi,k(ξk)Ai, Bk =

r∑
i=1

µi,k(ξk)Bi (2)

where Bk is supposed to be a full column rank matrix and
where the weighting functions µi,k(ξk) depend on the so-
called premise variable ξk which may be a state, input, or
output combination. These weighting functions satisfy the
following convex sum property:

0 ≤ µi,k(ξk) ≤ 1,

r∑
i=1

µi,k(ξk) = 1 (3)

The considered linear reference model is the following:

xr,k+1 = Ar xr,k +Br ur,k (4)

s.t. xr,k ∈ Rnx , ur,k ∈ Rnu and where the desired
performances are defined by the choice of the matrices Ar

and Br.
The ideal tracking objective is to adjust, at each instant k,
the control uk in such a way that the system state xk follows
the reference model state xr,k with a null tracking error. For
this purpose, two procedures may be considered. The first
strategy consists in setting the controller structure and then
deduce the appropriate structural conditions that must satisfy
the reference model and controller gains. The second strategy
is not based on a prerequisited control law structure. The idea



is to find, as for the first strategy, the appropriate structural
conditions, but also an analytical expression for the control
law. If the ideal tracking is not reachable, some compromises
need to be defined such as, for example, tracking of a subset
of the states, instead of all of them.

B. Prerequisited control law

In order to achieve the tracking objective, the following
control law is considered:

uk = Kk xk +Kr,k ur,k (5)

Substituting (5) into (1), the closed-loop system is:

xk+1 = (Ak +Bk Kk) xk +Bk Kr,k ur,k (6)

The matching conditions for the reference model and the
system are then obtained by comparing the closed-loop
system (6) and the reference model (4). They are given by:{

Ak +Bk Kk = Ar

Bk Kr,k = Br

(7)

From (7), in order to have a solution in respect to the gain Kk

and Kr,k, the following rank conditions have to be fullfiled:{
rank[Bk] = rank[Bk|Ar −Ak]

rank[Bk] = rank[Bk|Br]
(8)

where Bk and Ak are defined in (2). If conditions (8) are
fulfilled, then at each sampling time, the gains Kk and Kr,k

are given by:

Kr,k = B+
k Br, Kk = B+

k (Ar −Ak) (9)

with B+
k a suitable pseudo-inverse matrix of the full column

rank Bk matrix.
Note that in order to satisfy the matching conditions (8), from
definitions (2), since the system matrices Ak and Bk depend
on the time, one sufficient, but not unique, condition is to
consider the matrices Ai, Bi and Ar, Br in the following
canonical form:

Ai =

 A0

Ai

 , Ar =

 A0

Ar


Bi =

(
0nx−nu

bi

)
, Br =

(
0nx−nu

br

) (10)

with A0 a matrix of dimension (nx − nu)× nx, Ai and Ar

matrices of dimensions nu×nx. bi and br are of dimension
nu × nu. The structure (10) means that:

1) the (nx − nu) first rows of the matrices Ai are equal
to the (nx − nu) first rows of the matrix Ar

2) the (nx − nu) first rows of the matrices Bi are null
3) the (nx − nu) first rows of the matrix Br are null

allowing to fully satisfy the rank conditions (8). It is im-
portant to note that the matching conditions (8) between the
reference model and the system depend on the choice of the
control law, uk given by (5). It means that these conditions
have to be adapted when changing the structure of the control
law.

C. Numerical example

To illustrate the above conditions, let us consider the
following academic example:

Ar =

 0.2 0.5 0

−0.2 0.99 −0.1

0 0 0.2

 , Br =

 0

0

1



A1 =

 0.2 0.5 0

−0.2 0.99 −0.1

0 0 0.1

 , B1 =

 0

0

1.5



A2 =

 0.2 0.5 0

−0.2 0.99 −0.1

0 0 1.1

 , B2 =

 0

0

−0.5

 (11)

The weighting functions are taken as:

µ1,k =
2− sin(x1,k)− tanh(x2,k)

4
, µ2,k = 1− µ1,k (12)

Applying the tracking control law (5) with (9), the system
and model reference states are depicted in figure 1 (respec-
tively noted xi and xir, i = 1, . . . , 3). In figure 2, the control
inputs ur,k and uk are represented.
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Fig. 1. System and model reference states
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Fig. 2. Control inputs ur,k and uk

From the depicted figures, one can see that the control
tracking is efficient for all the three states under the specified
structural conditions.



D. No prerequisited control law
In this subsection, no prerequisited structure of the control

law is considered. Then, at time k, in order to achieve the
tracking objective at time k + 1 with a null state tracking
error between (4) and (1), meaning:

xr,k+1 = Ak xk +Bk uk (13)

the control law uk has to verify:

Bk uk = xr,k+1 −Ak xk (14)

Note that the exact state tracking is ensured, i.e. (13) has
a solution in respect to uk, only if the following matching
condition is fulfilled at each sampling time:

rank [Bk] = rank [Bk|xr,k+1 −Akxk] (15)

The tracking control is deduced and given by the following
equation:

uk = (BT
k Bk)−1BT

k (xr,k+1 −Ak xk) (16)

and the reader is invited to compare the two structures (16)
and (5) with the help of (9).

Remark 1: If the premise variables ξk of the weighting
functions µi,k depend on the input uk, the control law (16)
will be implicit (i.e. uk = F (uk)) since Ak and Bk are
input depending (2). A solution may be given by an iterative
algorithm with the following recurrence:

u
(j+1)
k =

(
(B

(j)
k )TB

(j)
k

)−1 (
B

(j)
k

)T
(xr,k+1 −A(j)

k xk)

(17)

with B(j)
k =

r∑
i=1

µi,k(u
(j)
k )Bi, A

(j)
k =

r∑
i=1

µi,k(u
(j)
k )Ai, j =

0, . . . , N with N the number of iterations and u0k the input
initialization (may be taken as ur,k for example).
The convergence of this algorithm may be proved locally, but
it will not be considered in the present work since it is not
the purpose of the study (see [7], [8], [9] for more details).
As mentioned in the beginning of this section, to achieve the
exact tracking, the system and model reference must be in a
certain canonical form (structural conditions). Depending on
the reference and system models, these conditions may be
impossible to meet and thus must be relaxed. One way is to
apply the tracking to some states only, but it can affect the
functioning of the system since other states are left free. A
better way is to use an approximate tracking of all the states.

III. APPROXIMATE STATE TRACKING FOR T-S SYSTEMS

In this section, the optimized tracking using the norm of
the tracking error is addressed. This part concerns the optimal
control with the introduction of the MPC for T-S models.
As it was mentioned above, due to the restrictiveness of the
exact tracking structural conditions, one can consider another
approach to relax these structural conditions. This approach
is the so-called quadratic optimal control for T-S models and
aims at minimizing the tracking error. This is a natural way
to deal with the problem by optimizing the tracking error.
Indeed, it is less difficult and conservative to deal with a
minimization problem than an equality constraint such as
expressed by the structural conditions of the previous section.

A. Control law design

At each time instant k, the objective is to minimize the
following criterion which is the norm of the tracking error:

Φk(uk) =‖ Bk uk − xr,k+1 +Ak xk ‖2W (18)

where W is a positive definite weighting matrix chosen
accordingly to the state components for which some specific
tracking is desired.
The control tracking law is then given by:

uk = (BT
k WBk)−1BT

k W (xr,k+1 −Ak xk) (19)

where the matrices Ak and Bk have been already defined in
(2).

Remark 2: When the premise variables ξk depend on
the control as explained previously (remark 1), the same
procedure goes for the control law (19) with the iterative
resolution, it becomes for j = 0, . . . , N :

u
(j+1)
k = ((B

(j)
k )TWB

(j)
k )−1(B

(j)
k )TW (xr,k+1 −A(j)

k xk)
(20)

with B(j)
k =

r∑
i=1

µi,k(u
(j)
k )Bi, A

(j)
k =

r∑
i=1

µi,k(u
(j)
k )Ai.

The proposed control tracking law uk (19) (i.e. (20) for input
dependent premise variables) aims to ensure the tracking of
xr,k+1 by xk+1 at each time instant k. Since the controller
has no ability to anticipate future events, it can not take
control actions accordingly and the tracking performances
may degrade. Based on this statement, the MPC tracking is
introduced for the T-S models. In fact, the main advantage
of MPC is to allow the current time slot to be optimized,
while keeping future time slot in account. This is achieved
by optimizing a finite time horizon, but only implementing
the current time slot.
As for linear and nonlinear model reference tracking control,
the MPC requires iterative solution and aims to ensure that
the tracking error is minimized on a finite sliding horizon.
Roughly speaking, the procedure for T-S models is the same
as for the conventional MPC. However, some difficulties
occur when the premise variables depend on the control.

B. Premise variables independent of the input

Considering a finite horizon of p+ 1 steps, using the state
equation

xk+1 = Akxk +Bkuk (21)

it follows the state expression at time k + p+ 1

xk+p+1 = Ak+pxk+p +Bk+puk+p

= Φk+p,kxk +

k+p−1∑
l=k

Φk+p,l+1Blul
(22)

where

Φk,l =

{
Ak−1 . . . Al if k > l ≥ 0

I if k = l
(23)



with Ak and Bk defined by (2).
Gathering the states on the time horizon [k+ 1 : k+ p+ 1],
let us note:

x̄k+1,p =


xk+1

xk+2

...
xk+p+1

 , uk,p =


uk

uk+1

...
uk+p

 ,Ak,p =



Ak

Ak+1Ak

...
p∏

i=0

Ak+p−i


(24)

Bk,p =



Bk 0 . . . 0

Ak+1Bk Bk+1 . . . 0

...
...

. . .
...

p−1∏
i=0

Ak+p−iBk

p−2∏
i=0

Ak+p−iBk+1 . . . Bk+p


Using (22) and (24), the state x is written as:

x̄k+1,p = Ak,pxk + Bk,puk,p, xk,p ∈ Rn(p+1) (25)

To ensure the reference model tracking on the time horizon
[k + 1 : k + p + 1], the control uk,p is ajusted in order to
minimize the criterion:

Φk,p(ūk,p) =‖ xr,k,p −Ak,pxk − Bk,puk,p ‖2W (26)

with xr,k,p =
[
xr,k+1 . . . xr,k+p+1

]T ∈ Rn(p+1).
This leads to:

uk,p = (BTk,pWBk,p)−1BTk,pW (xr,k,p −Ak,pxk) (27)

where the input at the step k defined by:

uk =
[
Inu 0 . . . 0

]
ūk,p (28)

is then applied to the system. For the next step, the horizon
is moved and the criterion Φk+1,p is optimized in order to
obtain and apply the control uk+1. As explained before, the
control uk,p (in particular uk) is calculated while keeping
future time slot in account, which explains the anticipative
character of the MPC control.

C. Extension to premise variables dependent of the input

Since the weighting functions of the matrices Ak,p and
Bk,p (24) may depend on the control ūk,p, instead of the
analytical solution (27), the following iterative algorithm is
proposed:

1) define a threshold δ
2) for j = 0, define u(j)k,p and u(j−1)k,p

3) compute A(j)
k,p and B(j)k,p

4) while ||u(j)k,p − u
(j−1)
k,p || > δ

u
(j+1)
k,p =

(
(B(j)k,p)TWB(j)k,p

)−1
(B(j)k,p)TW (xr −A(j)

k,pxk)

(29)

j ← j + 1, compute A(j+1)
k,p and B(j+1)

k,p .
with:

A(j)
k,p =



A
(j)
k

A
(j)
k+1A

(j)
k

...
p∏

i=0

A
(j)
k+p−i


, A

(j)
k =

r∑
i=1

µi,k(u(j)(k))Ai

B(j)k,p=



B
(j)
k 0 . . . 0

A
(j)
k+1B

(j)
k B

(j)
k+1 . . . 0

...
...

. . .
...

p−1∏
i=0

A
(j)
k+p−iB

(j)
k

p−2∏
i=0

A
(j)
k+p−iB

(j)
k+1 . . . B

(j)
k+p



B
(j)
k =

r∑
i=1

µi,k(u(j)(k))Bi

(30)
After the algorithm convergence, the control input at the step
k is defined by:

uk =
[
Inu

0 . . . 0
]
uk,p (31)

and is applied to the system. For the next step, the horizon
is moved and the criterion Φk+1,p is optimized in order to
obtain uk+1.

IV. NUMERICAL EXAMPLE

In order to illustrate the proposed approach, let us consider
the following numerical example:

Ar =


0.2 0.5 0 0 0

−0.2 0.19 −0.1 0 0

0 −1 0.2 0 0

0 0.2 −0.2 0.9 −0.2

0.1 0.3 0 0 0.7



A1 =


0.3 0.5 0 0 0.1

−0.2 0.69 −0.1 0 0

0 −1.1 0.5 0 0.1

−0.51 −0.1 0 0.9 −0.2

0.1 0.3 0 0 1



A2 =


0.6 0.5 0 0 0

−0.2 0.39 −0.1 0 0

0 −1 0.5 0 0

0 0.2 −0.2 1 −0.2

0.1 0.3 0 0 0.8





B1 =


−0.2 0.3

0.4 0.5

0.3 1.3

0.55 0.45

−0.7 −0.3

 , B2 =


−0.8 −0.3

−0.2 −0.1

−0.3 0.7

−0.05 −0.15

−1.3 −0.9



Br =


−0.5 0

0.1 0.2

0 1

0.25 0.15

−1 −0.6


The weighting functions are input dependent and given by:{

µ1,k =
1 + 2 tanh(u1,k)

2
µ2,k = 1− µ1,k

(32)

One can verify that the exact tracking conditions (8) are not
fulfilled. For this reason, the MPC is performed for three
steps forward (p = 2) with iterative resolution (30).
First, the objective is to ensure a good tracking of the fourth
and fifth state components. Consequently, the weighting
matrix is chosen as W = diag(1, 1, 1, 2, 2), implying a
relaxation of the tracking of the first three state components.
The system and reference model states are depicted in figure
3 (respectively noted xi and xir, i = 1, . . . , 5). In figure 4,
the control inputs ur,k and uk are represented. From the
depicted figures, one can see that the control tracking is
efficient (especially for the fourth and fifth states) although
the structural conditions are not fulfilled.
Secondly, if the main objective is an accurate tracking
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Fig. 3. System and reference model states for W = diag(1, 1, 1, 2, 2)

of x3r by x3, one should set the weighting matrix as
W = diag(1, 1, 2, 1, 1). The obtained results are displayed
in figure 5 for the system and model reference states and in
figure 6 for the control inputs ur,k and uk.
One can observe that for this case, the third state tracking
has been improved when the fourth and fifth states tracking
have been slightly deteriorated.
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Fig. 4. Control inputs ur(k) and u(k)
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Fig. 5. System and reference model states for W = diag(1, 1, 2, 1, 1)
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Fig. 6. Control inputs ur(k) and u(k)

In order to quantify the improvement due to the predictive
control, let us consider the following criterion:

φi =

N∑
k=0

|xr,k,i − xk,i|

where i the component number of a vector (i = 1, . . . , 5),
N is the simulation horizon and xk,i is obtained from non
predictive control (16).
φip is analogously defined with xk,i obtained with MPC:

φip =

N∑
k=0

|xr,k,i − xpk,i|



Finally, the performance gain τi due to MPC is obtained
from

τi = 100
φi − φip
φi

For the considered example (W = diag(1, 1, 1, 2, 2)), we
obtain the following improvement (for each state): τ1 =
2.54%, τ2 = 12.99%, τ3 = 5.21%, τ4 = 64.72%, and
τ5 = 14.56%.
In order to highlight the influence of the time horizon length
p+ 1 on the tracking performances, the improvement of φi,
namely τi, is computed for time horizon characterized by
p ∈ {1, 2, 3, 4}. The results are gathered in table I.
One can conclude, for the presented example, that a horizon

p = 1 p = 2 p = 3 p = 4

τ1 1.76% 2.54% 8.99% 14.02%

τ2 4.80% 12.99% 22.28% 28.85%

τ3 3.81% 5.21% 6.21% 7.67%

τ4 46.90% 64.72% 77.52% 81.1%

τ5 10.62% 14.56% 13.64% 14.81%

TABLE I

of length p = 4 gives the best results.
It is also important to highlight that depending on the
dynamic characteristic of the reference on a time horizon,
a too short, as well as a too long horizon may not give
the best expected results. A compromise is then needed. To
quantify the best horizon length, a comparative study as the
one presented may be a good solution.

V. CONCLUSION

In this paper, the tracking objective for nonlinear T-
S model was considered. Structural conditions for perfect
tracking were established, as well as the quadratic optimal
control. A Model Predictive Control for the T-S case with
finite time horizon was also developed and the prediction
influence was highlighted via a numerical example.
A first perspective for the present work is to generalize the
matching conditions and the structure proposed in (10) for
a general control structure law and establish the relation be-
tween the reference model (Ar, Br) and the system matrices
(Ai, Bi). During the study, a strong correlation between the
time horizon length and the model reference dynamics was
pointed, in fact, a second interesting perspective will be to
present a choice criterion that optimizes the time horizon
length according to the model reference dynamics.
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