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Application to Actuator Fault Diagnosis
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Abstract— This paper addresses the Finite Memory Observer
(FMO) design applied to polytopic models. After a brief
introduction on FMO for linear systems, the nonlinear models
represented in a Takagi-Sugeno (T-S) or Polytopic form are
then considered. The considered observer design will be applied
to investigate the fault diagnosis for nonlinear discrete-time
systems subject to unknown input where joint system states
and unknown inputs estimation is proposed.

I. INTRODUCTION

In order to detect and isolate a sensor fault through the
estimation of system outputs using measurable signals and
the model of the system, fault detection and isolation (FDI)
techniques based on the time-evolution of the residual signals
obtained by the comparison between the measured outputs
and the estimated outputs [1], [2] are commonly considered.
The procedure is performed by defining and generating some
residual signal in order to detect the occurring fault(s). The
residual signals often consist in output estimation error,
provided by classical or unknown input observers. Then the
residual analysis and / or structuration may lead to fault iso-
lation. A way to do so is to establish the theoretical influence
of each fault on each residual, namely the signature table.
Then, a decision logic is used to generate fault indicators
based on these residuals.

System states or outputs estimation is the basis for the FDI
methods. Among estimation techniques, those using Kalman
filters or a Luenberger observer are widely used. These
estimators are said to be infinite memory and hence the state
estimation error converges to zero in infinite time. In contrast,
the Finite Memory Observer (FMO) has the advantage to
ensure the convergence of the state estimation in a finite
time, at least in the absence of disturbances.

Despite the interest mentioned above, few studies have been
published on the FMO compared to those on infinite memory
observers. The pioneering works are due to Jazwinski [3], [4]
and [5] where a state estimation formulation from a discrete
or continuous integral form of the inputs-outputs has been
proposed. This form was also considered by Medvedev [6],
[7] and Byrski [8] [9]. This filtering technique applied for
the continuous case [10], [11] as well as for the discrete
one [12], [13], offers a generic aspect in the sense that it is
applied for state estimation, parameter estimation and control
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with sliding horizon. Note that the nonlinear case has been
less discussed, however one can refer to the following works
[14], [15], [16].

Several works based on sliding horizon for an exact state
reconstruction in a finite time (without measurement noise
nor model uncertainties) may be found in the literature with
different terminologies like exact observers, FMO, integral
observers and ideal observers. Most of these studies are
academic, nevertheless some of them are applied to electric
power transmission networks [17], diesel engines diagnosis
[18], fuel cell estimation [19], state converters estimation
[20] or general applications in the diagnosis framework [21],
[22].

Given the advantage of the FMO, it seems interesting to
extend its scope to nonlinear systems. As it was mentioned
previously, few works deal with the nonlinear case. This
is why in the present paper a particular attention is given
to nonlinear systems represented in a polytopic or Takagi-
Sugeno (T-S) form. The polytopic model may have different
names, such as fuzzy model (Takagi-Sugeno model), multi-
model, local model networks, etc. It allows the representation
of nonlinear behaviors by the interpolation of a set of linear
submodels. Each submodel contributes to the global behavior
of the nonlinear system through a weighting function [23].
The T-S structure may be obtained by transforming the
original system into a polytopic linear model based on
the sector nonlinearity approach and the convex polytopic
transformation. This transformation has the major interest to
exactly represent the system without any loss of informa-
tions since the considered nonlinearities are bounded (each
parameter varies between two known values).

In the present work, finite memory observer for nonlinear
systems represented in a T-S form are proposed. The paper
is organized as follows. Section II introduces the state and
unknown input estimation with finite memory observer for
linear systems. In section III the T-S systems are considered
for both measurable and unmeasurable premise variables.
Iustrative examples are presented in Section IV and con-
clusion results are detailed in section V.

II. PRELIMINARIES: FINITE MEMORY OBSERVER FOR
LINEAR SYSTEMS

The FMO is designed on a finite sliding horizon of length
r + 1. From available measurements at time k + 7 in a time
interval [k : k + r], the system states are then estimated
in finite time. The horizon is moved by one step forward
[k +1:k+r+ 1] which allows to estimate the state at the



instant k+7r4-1. The next section details the above procedure
and expands it to the unknown inputs estimation.

A. State estimation

Let us consider the following system:

Te4+1 =
Yk =

where xj, is the system state at the instant k, uy € R™ the
input and yy, the output. A, B and C' are the system matrices
with appropriate dimensions.

Using the system equation (1), the output expression at time
k 4 r is given by:

Axp + Bug, x € R
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Gathering the outputs on the time horizon [k : k + r|, let us
note:

Uk = Myx, + Myug 3)
with:
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Proposition 1: A FMO for system (1) is given by the
following structure:

Thtr = A"y + Ty,
T = (MIW M) 'MIW (g — Mytg) (4
T = [A7'B A"2B ...B|

where W is a positive definite weighting matrix of appro-
priate dimension chosen accordingly to the state components
for which some specific importance is given.
Proof: One can easily verify that Zx4, = T4, by
replacing the expression of Z; and (3) in g4, (4):
Thgr= AT(MJCT WMx)_lMxT W (g, — Myty) + Tay
:AT(MITWMI)_lMgW(erk + Myt — M, ay)
+Ty,
= A"z + Tuy
— Lhtr
||
Remark 1: Expression (4) shows that the state estimate
T4, at the instant k + r results from the input and outputs
filtering on the time horizon [k : k + r]. Since the same

procedure is applied one step forward [k + 1 : k+r 4+ 1],
it is possible to establish a recurrence relation between the
state estimation Ty, and Tgyp41.

In the next subsection, an extension for joint state and
unknown input FMO is considered. The proposed structure
is based on the same one given in (4).

B. State and unknown input finite memory observer

Let us consider the following system subject to non
measurable unknown input p:

Trpr1 = Axp+ Bup + Ppg, x € R™,pe R" 5)
Yk = Cuy
The unknown input dynamic is given by:
Pky1 = Pk + 0k (6)

where Jj, is the unknown input variation at the instant k.
T

Pk
concatenation of the system state and the unknown input:

An augmented state z§ = is defined with the

g, = Axp + By + POy
aa (7)
Yk = C T
with:
_:Ck A P
[L‘Z = Aa =
Pk 0 I
] (8)
B 0
B = P = c*=[C 0]
0 1
Equation (3) may be extended in the form:
e = Miaf+ Mt + Moy )
with:
[ Yk up,
- Yk+1 - Uk+1
Y = U =
LYk+r Uk4r—1
- 5k C(L
~ 5 C*A®
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[ Ok4r—1 Co(A)
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By analogy with the previous subsection results, the aug-
mented state estimate Z§ is given by a similar expression
than the one given in (4). Then from £¢ we directly deduce
the estimation of Zj of the state and pj of the unknown
input. In the next section an extension of the above finite
memory observer is given for nonlinear T-S systems.

III. FINITE MEMORY OBSERVERS FOR T-S SYSTEMS

The T-S representation of a nonlinear system consists in a
time-varying interpolation of a set of linear submodels. Each
submodel contributes to the global behavior of the nonlinear
system through a weighting function p;(&x) [23].

Let us consider the following T-S model [24]:

Trpt1 = Ak xp + Br up (10

with:
A = ZUi(fk)Aiv By = Zui(ﬁk)Bi (11)
1=1 i=1

where the weighting functions p;(£x) depend on the so-
called premise variable &, which may be a state, input, or
output combination. These weighting functions satisfy the
following convex sum property:

0< pi&) <1, Y mi(&) =1
i=1
s.t. xp € R™ and uyp € R™«.
Roughly speaking, the FMO design for T-S models is the
same as for the conventional linear case. However, some
difficulties occur when the premise variables are not known.

12)

A. Known premise variables

In the present subsection, the case of known premise
variables is considered. Based on the same structure as for
the linear case, for the time horizon [k : k + r], the output
vector is given by:

O = My(§)wr + My (&)l (13)
with the following definitions:
gl{ = [ yg yl{—i—r ] 7’&’{ = [ ug ug-l-r—l }

.. ... "B
0 0 e e 0
cep® 0 0
Mg = | ¢opepe cepe
_CaA(L’"’IP(L CaAr—2Pa C(J,Pa_

¢ (M2 (&))"
A ME ()"
M (&) = CApi1 A s My (&) =
CA,HT:; LA (M (&))"
(MY&)T =0 (CBr)T (CAxs1Bi)"
(CApgr1 .- A1 Br)T |
(M2(&)" =10 0 (CBrp)" (14)

(CAgyr—1.. Apg2Bri1)" |
(Mg (&))" =10 0 (CBryr1)" |

Note that the matrices Ay and By (11) are time dependent
(depend on the premise variables &) which implies that the
matrices M, (&) and M, (&) are also time dependent.

At time k, let us consider the following criterion:

®(xp) = Gr — My (&) — My (&) |5 (15)

where W is a positive definite weighting matrix of appro-
priate dimension chosen accordingly to the state components
for which some specific importance is given.

Supposing that M, is full column rank, the state estimator
may be given in the following form:

(o1=(ME (60) W M (€)™ ME (&) W (G — Mu(Ex)n)
jjk-+r = Ak+7-_1 C Ak.fjk + Ty,

TZ[AkJHA,l - Ak+1Bk AkJrT,l - Bk+1 - BkJrr,llJ
(16)

The state estimation at time k + 7 is then deduced using the
data collected on the interval [k : k+r]. Then, the horizon is
moved by one step forward [k + 1 : k47 + 1] which allows
to estimate the state at the instant k 4+ + 1.

B. State filtering

The model (1) does not take into account the noise that
frequently corrupts the outputs. Without a precise modeling
of that noise, it is however possible to reduce its influence on
the estimates by introducing, in the optimization criterion, a
regularization term:

®(xy) = i — Mo (&)}, — Mu(&)tr I3
+ o — 2o |7

where F' is a positive definite weighting matrix of appro-
priate dimension which plays the same role as W (chosen
accordingly to accentuate the filtering on a considered state
component).
The derivative of the above criterion with regard to the state
is given by:

0d

oo = —2M (&)W (G — Mo (&), — My (Er)in)
L,

+2 F (2}, — xp—1)

7)



The solution is given for:

iy = (M (&)W Mo (&) + F)7
(M (&)W (§ — My @) + F i) (18)

Remark 2: By developing the inverse of the matrix
MT (&)W M, (&) + F, the solution (18) may be expressed
in terms of the non regularized solution given in (16).

&, = (MT(6) W Mo(&) " F + 1)

. . 19)
(k4 (M (&) W My (&))" F dp—1)

where j, correspond to the state estimation obtained without

filtering.

Unsurprisingly, from (19), we notice that if F' — 0, then

2, — 25 and if F' — oo then &}, — T4_1.

C. Unknown premise variables

Let us now consider the case where the the weighting func-
tions of the matrices A and Bj depend on the (unknown)
state of the system. Instead of the analytical solution (18),
an iterative solution is proposed.

For the time horizon [k : k+r], let us note 9 the initial state
estimation, which may be set equal to the previous horizon
state estimate Z;_1. The state estimate is then given by:

~(1 ~(0 ~(0 -1 ~(0
g = (I W) M (@)
W (i — M, (&}")iix)
M (2) = ﬂ4¢(§k)|5k:£$)
~(0
Mu(xl(q )) = Mu(fk) |§k:j§€0)
(20)
More generally, at iteration ¢ + 1 we get:
—1
~ 1 ~ ~ ~
B = (MEE WMD) M)
W (k- M)
FUV = Ao A0 TG,
M,(&7) = M,(&) Jp—
Mu(#7) = Mu(&) |, _s0
' (21

The same idea is applied when considering the noise filtering
as explained in section III.B.

D. State and unknown input estimation

The extension of the proposed observer in section IL.B to
the T-S case is deduced straightforwardly by replacing Ay,
By, and C in (14) by A¢, By and C* defined by (8) in which
A, B and P are replaced by Ay, By and Py respectively.

IV. ILLUSTRATIVE EXAMPLES

In the following section, numerical examples are given in
order to illustrate the effectiveness of the proposed observers.
Let us consider the T-S model with two submodels and state
dependent premise variables:

[ 0.392  0.040 0 [ 0.10]
Ar=| 0080 0200 0.040| By =| 0.40

|—0.200 —0.040 0.160 | | —1.00]

[ 0931 0095 0 ] [ 0.10]
Ay =| 0190 0475 0.095| By = | 0.40

| —0.475 —0.095 0.380] | —1.00]
c=[1 0 0

1

pa(ag) = 5 (1+ tanh(a: (k)/0.5)), po(ze) =1 = pu (k)

(22)
A. State estimation

In the considered example, the weighting functions are
state dependent (z1(k)). The formulation given by (20) and
(21) of section III.C is then applied.

x1(k), &1 (k)
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Fig. 1. System states xj, and their estimates T

In figure 1 are depicted the system states z;, i = 1,2,3
as well as their estimates. Only one state is measured and
the considered time horizon length is equal to 3. Figure 2
depicts the system input u(k), output y(k) and its estimate
7(k) as well as the weighting function 4 (x)) which covers
the two modes (submodels).

As seen on these figures, the states are well estimated (but
no measurement noise was considered).

B. Estimation with noise and unknown inputs

In this subsection, unknown inputs are also considered. In
order to illustrate the efficiency of proposed filtering algo-
rithm, two simulations results are presented. The first case is
about state and unknown input estimation, the measurement
are subject to an additive measurement noise but the filtering
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Fig. 2. Inputs ug, measured and estimated outputs yg, Jr and weighting
function g1 (k)

algorithm is not applied. In the second case, the state filtering
given in section III.B is applied.
The unknown input matrix P is defined as:

p=[1 1 1" (23)
In this second example, the matrix C' is defined by:
10 0
C= (24)
010

In figure 3 are depicted the system states and their estimates.
The joint estimation state/unknown input was done with
measurement noise but without any filtering. As the figure
shows, the third state estimate &3(k) is greatly affected by
the noise. This result may be explained by the fact that since
only the states z; and xo are measured, the estimation is
made to the detriment of the third one.

In order to improve the estimation, the filtering proposed in
section II1.B is then applied. The figure 4 shows the unknown
input J; and its estimate 3k as well as the input uj. The
filtering effect is clearly illustrated in figures 5 and 6 where
the improvement is clearly shown for the third state.

From the depicted figures, one can observe the efficiency
of the proposed algorithms.

V. CONCLUSION

In this paper, a Finite Memory Observer design for non-
linear T-S model was considered. A joint state and unknown
input reconstruction algorithm was proposed for both mea-
surable and unmeasurable premise variables. The case of
measurement noise was also studied with the proposition of
a filtering algorithm. Numerical examples were presented in
order to highlight the approach efficiency.

As futur work, it turns possible to to extend the proposed
approach to sensor fault detection and isolation with the help
of a bank of finite memory observers.
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Fig. 3. System states x and their estimates Z: with noise measurement
and without filtering
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Fig. 4. The input ug and unknown input 0 and its estimate: with noise
measurement and without filtering
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Fig. 5. System states xj and their estimates Zj: with noise measurement
and filtering
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