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Abstract— This paper deals with nonlinear system control formalism is used to represent the nonlinear behaviouref th
with input saturation and parametric uncertainties. The con-  saturated actuator and a Parallel Distributed Compemsatio
sidered nonlinear systems are represented by Takagi-Sugeno (ppcy method is used to design a state feedback controller

models. The proposed controller is a parallel distributed com- f tai l t Stabilizati dii
pensation state feedback. Stabilization conditions are derived or uncertain nonlinear systems. stabilizalion condsiane

with the Lyapunov method and expressed as an optimization derived with the Lyapunov method and expressed as LMI.
problem under linear matrix inequality (LMI) constraints. The However, it is important to highlight a crucial difference
obtained controller gains depen_d on the saturati_on limits. The ith respect to the previous cited method, in the proposed
descriptor approach for modelling is also applied to reduce  gh5r6ach, the T-S model of the saturation is valid in the
the number of LMI. An academic example is presented with a .

comparison between the proposed approach and a conventional WhOIe_ state space and represents the nonlinear actuator
controller. behaviour.

Index Terms— Nonlinear system, uncertain system, Takagi- The paper is organized as follows: section Il introduces the
Sugeno model, actuator saturation, linear matrix inequality, ~Takagi-Sugeno structure for modelling, some preliminary
descriptor system. results and mathematical notations. It is followed by the

representation of the nonlinear saturation by a T-S stractu
l. INTRODUCTION in section lll. In section IV a state feedback control law

In this paper, uncertain nonlinear systems representeé@pending on the saturation bounds is designed. In section
by Takagi-Sugeno (T-S) models with actuator saturatiol, the descriptor approach is applied in order to reduce the
constraints are considered. In the existing literatureers¢ number of LMI to solve. A numerical example and some
approaches are proposed to deal with the saturation problesimulation results are given in section VI. Conclusions and
One can find the anti-windup controller, a two-step approadiiture works are detailed in section VII.
in which a nominal linear controller is first constructed by
ignoring actuator saturation. Once this controller is glesd, [l. PRELIMINARIES
usually a so called anti-windup compensator is added to han
dle the saturation constraints. A typical anti-windup sohe
consists in augmenting the nominal pre-designed linear con The T-S modeling allows to represent the behavior of
troller with a compensator based on the discrepancy betweranlinear systems by the interpolation of a set of linear sub
unsaturated and saturated control signals fed to the daet ( models. Each submodel contributes to the global behavior of
[7] and [6] for more details). the nonlinear system through a weighting functjaié (t))
Actuator saturation is also dealt with by designing low8]. The T-S structure is given by
gain control laws, which for a given bound on the initial
conditions, avoid the saturation limits ([5], [11] and the

A. Takagi-Sugeno structure for modeling

references therein). Xt = Z“‘ X(t) + Biu(t))
Another method is proposed in [2] where the T-S modelling @)
approach is used to analyze the domain of attraction of yit) = Zl“' X(t) +Diu(t))

nonlinear systems with actuator saturation. In [9], pghto
models are also used to represent the saturated closed-lagferex(t) € R™ is the system stateyt) € R™ is the control
system for the synthesis of linear control systems and aeveinput andy(t) € R™ the system outputé (t) € RY is the
conditions to ensure the local asymptotic stability of thejecision variable assumed to be measurable (as the system
closed-loop system are derived in the form of Bilinear obutput or measurable states) or known (as the system input).
Linear Matrix Inequalities (BMI) or LMI. However, these The weighting functiongs (& (t)) of the n submodels satisfy
polytopic differential inclusions only locally represetite  the convex sum property
saturated system.
In the present paper, the input saturation is straightlgnak
into account in the controller design process. For thatTtBe Z“‘ = )

The authors are with Centre de Recherche en Automatique O<m(&t >)—1’ i=1...,n
de 'I\;ancg'oét(cr\;é'\')’Hayg've,!f%(ig Lomane, © :i?_?\,‘angy A e dn the remaining of the paper, the three following lemmas
firstname. name@mniv-1lorraine.fr are used.



Lemma 1. Consider two matriceX andY with appropri-
ate dimensions;, andG symmetric positive definite matrices
The following property is verified

—XTEX YTz Yy <XTY+YTX <XTGX+YTG 1Y (3)
Lemma 2: (Congruence) Consider two matricksand.
If X is positive (resp. negative) definite andMfis a full
column rank matrix, then the matrikXY" is positive (resp.
negative) definite.
Lemma 3: Consider three matriceX, Y and X(t) with
ST(t)Z(t) < I. For any positive scalak

XTZOY +YTZT X <AXTX+A7YTY (4)

B. Mathematical notations

The following notations are used throughout the paper.

A bloc diagonal matrix with the square matricAs,..., A,
on its diagonal is denoted digdy, ..., An).

For any matrix,M, S(M) is defined byS(M) =M +MT.
The smallest and largest eigenvalues of the mattixare
respectively denotedmin(M) and Amax(M).

The saturation function for a signalt) is defined as

v(t) if  Vmin < V() < Vmax
sat(v(t)) := { Vmax  if V(t) > Vimax (5)
Vmin I V(t) < Vgin

where viax and vpin denote the saturation levels.

I1l. PROBLEM STATEMENT

A. T-Smodelling of the control saturation

i
. : ) . U
The main idea of this work is to model the nonlinear_M"

actuator saturation using the T-S representation (sedkion
A). For that, it is proposed to re-write the saturation etunat

(5) for each component of the control input vector under a

particular form. _
The jt™" entry of the saturated control input, denoteg (t),
with the saturation levels);, and e is written as

_ 3 , _
Uéx(t)ézlﬂij(uj(t)) NWui®)+v). i=1...,nu (6)

whereu;(t) is the j" component ofu(t), where

A o= 0 W= Uhin
/\21 = 1 and y2J =0 @)
)\é =0 y:; — UJ
and the weighting functions are defined
j 1-sign(u; (t)—ul
B |
IJzJ(Uj(t)) _ sgn'(uj-(t)—um?;sgn(uj(t)—um) 8)
) = ZEb-tm)

Then, the control input vectax(t) € R™ subject to actuator
. saturation is modeled by

3
;Nil(ul(t))()\ilul(t) +W)

. :
';uf"(uz(t))()\fw(t) +¥) 9)

Usat (1)

3
Zl B (Uny (£) (AU, (1) + 1)

From (9), one can notice that each inputt) has its own
weighting functiong!(t). In order that all then, input vector

components have the same weighting functions, based on the

convex sum property (2), equation (9) can be written as

3 ng 3
1 1 ]
i;u. (O (Atua(t) +yH)( ,EL;“' )

ng 3

M2H

j#

3 .
3 KON WO+

Usat(t) =

3 . n—1 3 .
Ny ny u L
\;H' () (AMun, (1) + y)( J|:|1 i;u. 1))

(10)

For ny inputs, 3v submodels are obtained. It is important
to note that the actuator saturatiomsy(t) are directly
expressed in terms of the control variahlé) and its bounds
=y} and Uhex = V4.
Equation (10) is equivalent to

3w
Usat (t) = Zluis""t(t)(/\iU(tHFi) (11)

i=
The global weighting functiongi¥(t), the matricesh\; €
RM"*M and vectord; € R"*! are defined as follows

uE) = nlu;j<uj<t>>
J: I
A = diag(Al,...,AM) (12)
| 7
Mo = [ VoV |

where the indexesri'(i =1,...,3%vandj=1,...,ny), equal
to 1,2 or 3, indicate which partition of the™ input (u{, u)
or u3) is involved in thei ™ submodel. A

The relations between thé" submodel and the! indices
are given by the following equation

i:3nu—10i1+3nu—20i2+..’+3oainu_(3l+32+”._’_3nu—1)
Nu

The aij are such that(g! —1),..., (g™ — 1)) corresponds
to (i-1) in base 3. For more details, see [1].



B. Uncertain saturated system description whereP € R™ is a symmetric positive definite matrix.

Let us now consider a T-S uncertain nonlinear system with® €nsure the stability of (20), the conditions to satisfg ar

input saturation represented by the following state equati € following (see [4] for the proof)

n S(APL—BiRj) PEf wA REj wB
X(t) = ZlUi(E(t))((Ai +DA(1))X(t) + (Bi +AB(t) ) usat () * -l 0 0 0
i= (13) * * —wl 0 0 | <0 (22
* * * —apl O
where % % * x  —wpl
DA(t) = AZA(t)Ea (14)
with PL = P~1, wy, wp positive scalars. The controller gains
AB(t) = B2g(t)Es (15)  K; in (19) are computed byK; = RjP; %, fori, j=1,...,n
with B. Controller with saturation constraint
TAMZAM) <1, Wt (16) In this section, our objective is to design a time-varying
- state feedback controller (19) which gains depend on the
Zg(t)2s(t) <1, (I7)  saturation limits to guarantee the stability of the underta

system (18) despite of the uncertainties and of the satlirate
input.

By replacing the control law (19) in the T-S system equation
(18), the obtained system is the following

| being the identity matrixA, B, Ep and Eg matrices of
appropriate dimensions.
Using (11), equation (13) can be written as

n 3w nu

K= 3 5 HEOMTO(A+BADXY 0= 3 35 H(ER)EE (A~ BAKXY
== j 1k

+ (Bi+ABO) (AU +T)) - (18) + (DA(t) — AB(H)AK; )X(t) +Bil +AB(H)M ) (23)

IV. SATURATED STATE FEEDBACK CONTROL INPUT Theorem 1. There exists a time-varying state feedback

The objective is to design a stabilizing time-varying stateontroller (19) for a saturated input uncertain system (18)
feedback controller ensuring the stability of the systewene ensuring that the system state converges toward an origin-
in the presence of control input saturation and uncer&snti centred ball of radius bounded by > O, if there exists
The solution is obtained by representing the saturation asnaatricesP, =P >0, R, Zx = ZI > 0, and positive scalars
T-S system and by solving an optimization problem undewy, i, wy solutions of the following optimization problem
LMI constraints.

min (24)
. . . Pl)Rj7sto-k7(’J.|.7("}2k
A. Nominal control law (without saturation) ot
In this section, a nonlinear state feedback controller-shar Qijk | <0 (25)
ing the same weighting functions as those of the T-S model I —Bl
is designed. Since it is the nominal case, the controllersyai i, Qiix defined by (27), foi=1,....n,j = 1,...,n and
are synthesized without taking into account the saturathp 1. ' .,3V (see next page). ’
limits.
Let us consider the following unsaturated control adopted f Bl ZkBilk + okl Eg Eslk < B (26)
stabilizing the system to the origin The gains of the controller are given by
n
-1
=— Y mEOKXD) (19) K =R _ (28)
=1 Proof: According to state equations (23), the time

, . derivative of the Lyapunov function (21) is given b
where the matrice; € R"™*™ are the controller gains to yap (elisg y

be determined. ) n n 3w
Replacing (19) in equation (13) without input saturatian, i V(X Ziz > Hi(§ (1) (< (HPBIT -+
becomes I=1k=1
FEBI Px(t) +xT (t)PAB(t)I 4 T F ABT (t)Px(t)+
ZZM () (A —BiKj+ X" (1) (A — BiAK}) TP+ P(A — BIAK;)+
_ AT _ .
PA() — ABOK, X()  (20) (DA(t) — AB(H))AKK) ' P+ P(AA(t) AB(t)/\kKJ))x(t)()zg)

In order to study the stability of (20), the following Lyapmn  Using Lemma 3, it follows that foEy = zl >0

function is defined - S ToT T 1
X' (t)PBil + T B Px(t) < T B ZkBilk + X' (t)PZ, “Px(t)
V(x(t)) =x" (t)Px(t) (21) (30)



PLAT +APL— RIALBT — BAR; + wiAAT +wpBBT | B

*
Qijk =

*
*
*

PLEL RJ-T NEE

-2k 0 0 0
* —aoil 0 0 27)
* * -l 0
* * * — il

Using Lemma 3 and definition (15), it follows that, for anySinceZy, gy > 0, from (32), it follows thatV/ (t) < —& || x ||?

positive scalary, it holds

X (t)PAB(t) M+ T FAB(t)TPx(t) <
ol R E§ Eslk + 0 ™x' (t)PBBTPx(t) (31)

+3. ThenV(t) < 0 holds if

{ Qijk<0

41
NS “1)

According to Lyapunov theory [10], it means thaft) is

From (30) and (31), the time derivative of the Lyapunoyniformly bounded and converges to an origin-centred ball

function (29) is bounded as follows

n 3w

V(x(1)) < i;;k;ui(f)ﬂi(f)ll?(t) (Tk Bl ZkBilk+
UkrIEgEBrk—l—XT(t)Qiij(t)) (32)
where

Dijk = (A —BINK;) TP+ P(A — BIAK)) + o 'PBBTP
+(AA(t) - AB(t)AKj) TP+P(AA(t) — AB(H)AKK;) +PZ P
(33)

Applying Lemma 2 withY = P; and the following variable

changes
Py
R

the inequality2;jk < 0 is equivalent to

Pfl
KiPy

(34)

PLAT + AP — RIALB — BAR; + %t + 0 *BBT +
PLAAT (t) + AA()PL— RTAGABT (t) — AB(H)AGR; <0 (35)
From (14-17), with Lemma 3, it follows

PLAAT (1) +AA(H)PL < wp "PIEAEAPL + wanAAT  (36)

— RIAGABT (t) — AB(t) AR <
Wy 'RI AL EGEsAR| + wpBBT  (37)

of radius /2.

Since Z;jk < 0 is ensured by (25), the objective is now to

minimize the radiu g. Firstly 4 is bounded by3 from the
definition (40) and the LMIs (26). From (25), with a Schur
complement, it obviously follows that

(1/B) 1 < —Qijx, i=1,...,n,j=1,...,n, kK= 1,...,3Mm
(42)
implying that all the eigenvalues @~Q;jx) are larger that
1/. As a consequence/f < € holds, and finally the radius
is bounded byB3. The minimal value of3 is obtained from
(24). [ |

V. SATURATED STATE FEEDBACK CONTROL INPUT: A
DESCRIPTOR APPROACH

In this section, in order to reduce the number of LMIs to
be solved, the descriptor approach is applied. This approac
is well known to avoid the coupling terms between the feed-
back gains and the Lyapunov matrices. As a consequence,
the number of LMIs decreases and relaxed conditions are
obtained [3].

The control law given by (19) is written as follows
n
0.0(t) = — > Hj(&(1)Kjx(t) —u(t) (43)
=1
Let us consider the augmented state vecigrt) =
(xT(t) u'(t) )T. From equations (18) and (43), it follows

wherew; and wy are positive scalars. n 3w
From (36) and (37),2ijk < O is satisfied if Exa(t) =5 5 W& 1) (“A(Dxalt) + Bik(t)) (44)
i=1K=1
PIAT + AP — RIAB — BIAR; + %, "+ 0 'BB -+ with
w; PLEAEAPL+ il AAT + Wy IRT AL ER Es/AGR, + wxBBT <0 E =diag(l,0) (45)
(38) ) = ( A +DA®L)  BiAg+AB(H)A ) (46)
Applying Schur’s complement, (38) is equivalent@gx < 0 —Ki =l
which is implied by (25). B(t) = BE 1+ Bt 47
In order to analyse (32), let us now define (®) ikt 70 “7)
Bil AB(t)M
i o k= B¢ ) Ao - ( ) w
€ i:l:n.j:T:lr?k:l:@u /\mn( Q”k) (39) ! 0 I 0
Theorem 2: There exists a time-varying state feedback
_ TRT ) TeT
0= A FkBi 2Bl + 0kl Eg Bal 40 controller (19) for a saturated input uncertain T-S syst&&) (



ensuring that the system state converges toward an origiAppIying Schur’s complemen\Z( t) <0 holds ifZjx < 0 and
centred ball of radius bounded Iy if there exists matrices || x ||2> €. Zik <0 is ensured from (50). The minimization
P = PT >0, >0 R, 2= ZT > 0, and positive scalars of the upper bound valug is done as the previous casm.

/\1k,/\2,)\3 solutions of the foIIowmg optimization problem
VI. NUMERICAL EXAMPLE

PL,P,R EI,?1K7A27A3B (49) The proposed state feedback controller design for systems
s.t. with saturated control input is illustrated by the follogin
Zik | <0 (50) academic example. Let consider the uncertain nonlinear
I —pl system (13) witn =2 and
with =jx defined by (51), foii=1,...,nandk=1,...,3W —1 1 —0.80 002
(see next page) and A= o _ors A={ 020 -—140
Ml 5T+ Al TEL Egl 52 _(o1 1 _(0%2 1
k Ik k+ Al EgEslk < BB (52) A 1 o1 ) Ea 1 05
The gains of the controller are given by 2 2 0.75 0
Bi ={ 2 2 ) B2={ _o5 075
Ki =P 'R (53) 0 01 01 01
Proof: Let us consider the following Lyapunov function = ) = ) ’
us consl Wing Lyapunoviunction B 01 o>’ Be <0.1 0.1)
V(t) =x3 ()E"Pxa(t) (54) (63)

2a(t) =2g(t) = o(t)l with o(t) depicted in Fig. 1 The input
with the conditionETP = PTE > 0. The matrixP is chosen Al) 5(t) = ()l with o (t) depi n 9 npu

P = diag(P,P), with P, =P > 0.
The time derivative of the Lyapunov function is given by

n 3w

V) =3 5 (&) ()(Bit)Pxa(t) +x5 ()PT Bic(t)

=1k=1

+30 (O (A (OP+PT (1)) xalt)  (55)
The main idea for the proof is to separate the constant and Fig. 1.

the time-varying parts inZ(t) and Zik(t). Then, based on

properties (16) and (17), the time-varying part is boundedyector is subject to the following actuator saturations
Using lemma 1 and 3 with equations (14) and (15), for any

symmetric positive definite matricé, positive scalars\yx Utmax = Uzmax = 2, Utmin = Uzmin = —2 (64)

and positive scalard; andAs, it follows The weighting functions are defined as follows
X (t)PT B+ (25) T Pxa(t) < (1 tank(x
- 1(t) +%2(1))).
ME =M+ X (DPBZ TBY Pix(t) (56) H(X(1) = 5 PH2(X(1)) = 1= pu(x(1))
20T ¢ T (1)PT 72 (65)
(Zik )T (PXa(t) +Xa (¢ )JI.DT% K= T In order to illustrate the effectiveness of the proposed ap-
AT CEgEalk+ (M) X" (1)PBBTPix(t)  (57) proach, a so-called nominal controller is computed without

10 15

Uncertaintyo (t)

XT (H)PLAAX(L) + XT (1) AAT (t)Pyx(t) taking into account the input saturation, although thersatu
< AoxT (1)ELEax(t) AT ()PLAAT Px(t) (58)  tion acts on the control input. Then a comparison is provided
- A 2 between the nominal closed loop system without saturation,
xT (t)PLAB()AKU(t) +uT ()AL ABT (t)Pix(t) (59) the nominal closed loop system with saturated actuators and
< A3 X7 (1)PiBBTPix(t) + Asu” ()AL E§ EsAku(t) the closed loop system with the controller proposed in this
The time derivativey (t) (55) is then bounded by Ezﬁﬁ(rjgvhere the controller design depends on the saturation
) n 3u w . For the considered example, the calculated nominal gaes ar
V) < D Hi(E0) S (1) (Xa (t)-AiXalt) 110 111 164 164
i=1K=1 . .
o= ( )= ( )
TS+ 02 ELEsM)  (60) n 093 094 n 139 139
with The control gaind;,K, computed from theorem 1 are
. A —K P+ P BiAg _( 973 897 [ 973 897
Mk = ( ¥ —P—P] + N\ EfEs/ 61)  Ki=1 1152 1072 )¥= 1152 1072 ) ©7

Applying the descriptor approach, the controller gains are
M= N PL+PIA +1ELEa+ 2, 'PIAATR

028 002 058 036
+(A) 'PBBTP + PBY, 'BTPL+ A5 'PBB'P  (62) Kig = ( 0062 Q42 ) Kag = ( 037 061 ) (68)



AlTlerPlAi Jr)\zEXEA —Ri + P1Bi/\¢

*

Sik =

* X X X X

*
*
*

PA PB PB PB

—P,—P] + A\ EgEsAc O 0 0 0

—Aal 0 0 0
* —Axul 0 0
* * -2k 0

—Asl

<0 (51)

* * *

—x
—X1sar
0.51] Xirs

\ —rsp

—x,
Xasat

Xors.

*21sD

X : : : : : : : : 4.20 for the first approach and 3.24 for the second one.

VIlI. CONCLUSIONS AND FUTURE WORKS

An uncertain nonlinear system with saturated control input
can be represented by a Takagi-Sugeno model, including
the input saturation. This unified representation allows to
simultaneously deal with these difficulties and to synthesi
PDC controller which gains depend on the saturation bounds.
The solution of this problem is based on the Lyapunov theory
o and expressed in terms of LMI. The descriptor approach is
-0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ also proposed, allowing to divide the number of LMI to solve

by n, the number of subsystems. It is important to highlight
that the main advantage of the proposed approach is the

Fig. 2. Time evolution of system states

stability ensurance of the saturated uncertain nonlingsy s

tems. A numerical example is presented in order to illustrat
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Fig. 3. Control inputs
(4]

On the figures 2 and 3, are depicted the system states and
control inputs of the nominal closed loop system without
saturation (respectively denoteg, xo, u; and uy), those of
the nominal closed loop system with saturation (respegtive
denotedkisat, Xosat, Utsat @aNduast) and those of the proposed (6]
approach (respectively denoteglrs, Xors, UiTs and uzts)
and 1D, Xorsd, Uitsp and uxrsp) for the descriptor

.
approach. )
One can observe from the depicted figures that the input

saturation has a destabilizing effect if it is not taken intol8l
account in the controller design. In the other hand, for the
proposed T-S approach, both stabilization and state toajec [9]
convergence to the origin are ensured in spite of the input
saturation and modelling uncertainities. Theorem 2 gibes t |1
stability conditions obtained with a descriptor approafie
number of LMIs @ x 3") is less than those of theorem 1
(n? x 3w) and the obtained results are slightly better. W‘fql
note that the fall time is almost the same (2s), with a state
converging toward an origin-centered ball of radius eqoal t

(5]

] B. Zhou, G. Duan, and Z. Lin.

Y ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ — the proposed approach. The provided example shows that
the proposed controller is able to conteract the destaigliz
effect of the saturation affecting the control input.
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