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Abstract: In this paper, we consider a nonlinear system represented by a multiple model, 
where a part of its inputs is unknown. Our objective is to estimate the state variables of 
this system. For that, we propose the synthesis of a multiple observer based on the 
elimination of these unknown inputs. It is shown how to determine the gains of the local 
observers, these gains being solutions of a set of linear matrix inequalities (LMI). The 
model of an hydraulic system with three tanks is used to test the suggested procedure. 
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1. INTRODUCTION 

A physical process is often subjected to disturbances 
which have as origin the noises due to its environment, 
uncertainties of measurements, faults of sensors and/or 
actuators. These disturbances have harmful effects on the 
normal behavior of the process and their estimation can 
be used to conceive a control strategy able to minimize 
their effects. The disturbances are called unknown inputs 
when they affect the input of the process and their 
presence can make difficult the state estimation. 

Several works were achieved concerning the estimation 
of the state and the output in the presence of unknown 
inputs. They can be gathered into two categories. The 
first one supposes an a priori knowledge of information 
on these nonmeasurable inputs, in particular, Johnson 
proposes a polynomial approach (Johnson, 1975) and 
Meditch suggests approximating the unknown inputs by 
the response of a known dynamic system (Meditch, 
1974). The second category proceeds either by 
estimation of the unknown inputs, or by their complete 
elimination from the equations of the system. 

Among the techniques that do not require the elimination 
of the unknown inputs, that of (Wang, 1975) proposes an 
observer able to entirely reconstruct the state of a linear 
system in the presence of unknown inputs; in 

(Kobayashi, 1982) and (Lyubchik, 1993), the authors 
have used a method of model inversion to estimate the 
state. 

Among the techniques which allow the elimination of the 
unknown inputs, that of (Kudva, 1980) establishes, in the 
case of linear systems, the existence conditions of the 
system observer with unknown inputs while being based 
on the technique of generalized inverse of matrix. Guan 
carried out the elimination of the unknown inputs of the 
state equations of a continuous linear system (Guan, 
1991). Many of other alternatives exist, but most of them 
were developed principally for linear systems. 

However, the real physical systems are often nonlinear. 
As it is delicate to synthesize an observer for a nonlinear 
system, we preferred to represent these systems with a 
multiple model. The idea of the multiple model approach 
is to apprehend the total behavior of a system by a set of 
local models (linear or affine), each local model 
characterizing the behavior of the system in a particular 
zone of operation. The local models are then aggregated 
by means of an interpolation mechanism. 

The motivation of this approach rises owing to the fact 
that it is often difficult to design a model which takes 
into account all the complexity of the studied system. In 
(Takagi and Sugeno, 1985), the authors have presented 
their fuzzy model of a system described by a set of rules 
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if premise then consequence ", such as the consequence 
of a rule is an affine local model; the global model is 
obtained by the sum of the local models weighted by 
activation functions associated to each of them. 
For state estimation, the suggested technique, consists in 
associating to each local model a local observer. The 
global observer (multiple observer), is the sum of the 
local observers weighted by their activation functions, 
which are the same than those associated with the local 
models (Patton, 1998). Our contribution lies in the design 
of this global observer by eliminating the unknown inputs 
from the system. The stabilization of the multiple 
observer is performed by the search of suitable Lyapunov 
matrices and the improvement of the performances of the 
multiple observer by pole assignment is formulated in a 
LMI context. 

2. MULTIPLE OBSERVER OF A SYSTEM WITH 
UNKNOWN INPUTS 

This section clarifies the construction of the observer. 
This last has an analytical form resulting from the 
aggregation of local observers and this form is 
particularly suitable for stability and convergence study 
of the estimation error. The numerical aspects concerning 
the determination of the gains of the observers will be 
also treated. 

2.1 Principle of the reconstruction 

Let us consider a system in multiple model (with r local 
models) form and dependent on unknown inputs: 

~;(t) = .(~(t))(Aix(t)+Biu(t)+F'ff(t)+Di) (1) 

Ly(t) = 

where x(t)6 R n is the state vector, u(t)ER l is the input 

vector, fi(t)6 R q the vector of unknown inputs and 

y(t)~ R m the vector of measurable output. For the i th 

model Ai E R nxn is the state matrix, /~ ~ R nxl is the 

matrix of input, F ~ R nxq is the matrix of influence of the 

unknown inputs and D i ~ R nxl is a matrix depending on 

the operating point. Finally, C ~ R mxn is the matrix of 
output and ~(t) represents the vector of decision 
depending on the input and/or the measurable state 
variables: the value of ~(t) allows to determine what are 

the active local models at time t. The procedure that 
allows to obtain this structure and to estimate its 
parameters is not developed here. Let us state that one 
can either uses techniques of parametric estimation 
(Gasso, 2001) or techniques of linearization (Johansen, 
2000). 
Let us consider the global functional state multiple 
observer, J ( t ) ,  described as follows: 

r 

~(t)=Zkti(~(t))(Uiz(t)+GilU(t)+Gi2 +LiY(t)) (2a) 
i=1 

~c(t)= z(t)-  Ey(t) (2b) 

N i E R nxn, Gil E R nxl, L i ~ R nxm is the gain of the 

local observer, Gi2 E R nxl is a constant vector and E a 

matrix of transformation. All these matrices or vectors 
have to be defined so that the reconstructed state 
asymptotically converges to the actual state x(t). 
The reconstruction error of the state is given by: 

.~(t)= x ( t ) -~c ( t )  (3) 

that is while using (2b): 

~(t)=( l+ EC)x(t)-z( t)  

Its time variation is : 

~c(t) 2 # i ( ~ (  )](P(aix(t)+Biu(t)+Fff(t)+Di)-) (4) 
= ,-,t,,~Uiz(t)_GilU(t)_Gi2_LiY(t ) i=1 

with 

P=I+EC (5) 

The expression (4) can be rewritten : 

r ( t ) +  I Ni~(t)+(PAi - Ni P-  t i f  )x 

~c (t) = Z ~  i ( ~ ( t ) ) / ( e n  i - a i l  )u(t) + 

i=1 [,(PD i -Gi2 )+ PUff(t) 

(6) 

If the conditions (7) are satisfied (Maquin, 2000) and 
(Gaddouna, 1995): 

P=I+EC 
LiC = PAi - N i P 

Gil = P B  i 

Gi2 = P D  i 

PF=O 
r 

i = 1.. r (7) 

Zkt i (~( t ) )Ni  stable 
i=l 

then, the reconstruction error of the global state tends 
asymptotically towards zero, and (4) is reduced to: 

.~(t)= ~i (~ ( t ) )N i .~ ( t )  
i=1 

(8) 

The numerical solution of the system (7) rises from the 

use of the generalized inverse (CF)- of (CF), the 
existence conditions being specified in (Kudva, 1980): 

E=-F(CF)-  

P = I - F ( C F ) - C  

Gil =PBi (9) 

Gi2 = P D  i 

N i = PAi - K i C  

L i - K i - N i E 

It is important to note that the stability of matrices 
N i, V i6{1 ..... r} does not guarantee the stability of the 

r 

matrix E~ti(~( t ) )Ni .  This item is discussed in the next 
i=1 

paragraph. 
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2.2 Global convergence of the multiple observer 

In this part, we will develop the sufficient conditions of 
the asymptotic global convergence of the state estimation 
error. 

The dynamic equation (8) is globally asymptotically 
stable if there exists a positive definite symmetrical 
matrix X, such that (Boyd, 1994): 

N f X + X N  i<O, 'v'ie{1 ..... r} (10) 

The search of a matrix X which is common to all 
matrices Ni in the preceding equations can be a rather 
conservative step. In what follows, another method, 
based on the existence of various local matrices Xi > O, 
will be used. 

Theorem 1 (Chadli, 2001): If there exists symmetrical 
and definite positive matrices X i such as: 

NihXi+XiNih<O, Vi6{1 . . . . .  r}, Nih=2(Ni+Nf) (11) 

where Nih is the hermitian part associated to the matrix 
Ni, then the multiple observer (2) is globally 
asymptotically convergent. 

Proof 

To solve (11), one uses N i = PAi-KiC from (9) and the 
inequality (11) becomes, g i6 {1, .... r} : 

(( eAi - KiC)+ ( PA i -- K i c )  T )x i  + 
(12) 

Si  (( PAi - g i G ) +  ( PA i - g i f  ) T )<o  

It is noted unfortunately that the preceding inequalities 
present the disadvantage of being nonlinear with respect 
to the variables K/ and X i (more precisely bilinear). A 

numerical procedure of resolution by linearization is 
presented in the following section. 

2.3 Method of resolution 

Methods of resolution were proposed to solve nonlinear 
and in particular bilinear inequalities (see (Chadli, 2001) 
and included references). The method that we adopted is 
known as local, because it is based on the linearization, 
with respect to variables K/ and X i , well chosen around 

the initial values Koi and Xoi. One poses: 

K i = Koi +OK i and X i = Xoi -FOX i (13) 

The inequality (12) then becomes: 

+OX i )+ 
PA i -(Koi +aK i )C) 

((PAi-(goi +OKi)C)+ I 
(Xoi+OXi)~(PAi_(Koi+OKi)c)T~<O 

(Xoi+~Xi)>O 

(14) 

By neglecting the second order terms of the inequality 
(14), one obtains: 

((eAi - KoiC) + (eAi - goif)r)oxi + 

~9Xi((P~. - KoiC) + (PAi - KoiC)r) - 

OKiCXo i _ (CXo i ) T OK F _ (15) 
craXTXo,  - X o , a < c  + 

( ( P A i  - KoiC ) + ( P A  i - KoiC)r)Xoi + 

Xoi((PA i - KoiC ) + (PA i - KoiC) T) < 0 

The system (15) is then of LMI type and its resolution is 
standard (Boyd, 1994). Let us note that the choice of 
initial values Koi and Xoi remains the major 
disadvantage of the method and moreover convergence 
towards a solution is not always guaranteed. 
Unfortunately, from a practical point of view, one can be 
led to test various choices of initial values in order to 
obtain a solution. 

Remark 

The LMI system (15) is valid only in the vicinity of Koi 

and X0i ; this encouraged us, to improve the resolution, 
to propose the following additional constraints (in order 
to limit the variations of matrices K and X ): 

{ I1 / /11 with 0 <e  << 1 (16) EIIg0ill < 

Ilaxill< llxoill ' 

The LMI formulation of the constraints (16), are 
described in the following way: 

 llx0/ll/,xn >o 
lr llK0/[[l(n×n) Ogi 1 (17) 

[L o f t  Ellgoilll(mxm) >0 

Indeed, if the LMI system (15) and (17) is realizable, 
then the multiple observer (2) globally asymptotically 
estimates the state of the multiple model (1). 

3. POLE ASSIGNEMENT 

In this part, we examine how to improve the 
performances of the multiple observer in particular with 
regard to the rate of convergence towards zero of the 
state error estimation. For better estimating the state 
variables of the multiple model, the dynamics of the 
multiple observer is selected in a manner which is 
appreciably faster than that of the multiple model. 

Definition: The multiple observer with unknown inputs 
(2) is known as locally observable if the pairs (PAi,C) 
are observable, V i~{1 ..... r} (Patton, 1998). 

To ensure a certain dynamics of convergence of the state 
estimation error, one defines, in the complex plane, an 
area S (cz, 13) built by the intersection between a circle, of 

center (0, 0) and of radius 13, and the left half plane 
limited by a vertical line of X-coordinate equal to (-cz) 
with cz being a positive constant. The LMI formulation is 
proposed by the following corollary. 
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Corollary: The eigenvalues of the m a t r i x  L~ti(~(t))Ni 
i=1 

belong to the area S(a,13 ), if there exists matrices 

OX i and ~K i such that: 

[ - ~ ( X o i  +~Xi) NoT.Xi-(~KiC) T Xoi]< 0 
Xi Noi - Xoi (aKiC) -f~( Xoi +aX i ) 

N~i~X i +~X i Noi - C  T ~Kf  Xoi -Xoi~KiC 

T +212(X0i +~Xi ) <  .... +NoiXoi +XoiNoi 0, V ie{1, r} 

~Noi = PAi -KoiC 
with: [Xi = Xoi _l_~Xi 

(18) 

4. EXAMPLE 

The selected nonlinear system is represented on figure 1. 
It results from a traditional benchmark (Zolghadri, 1996) 
and schematizes a hydraulic process made up of three 
tanks. These three tanks T1, T2, and T3 with identical 
sections A, are connected to each others by cylindrical 
pipes of identical sections S n . The output valve is located 
at the output of tank T2; it ensures to empty the tank 
filled by the flow of pumps 1 and 2 with respectively 
flow rates Q1 (t) and a2(t). Combinations of the three 
water levels are measured. The pipes of communication 
between the tanks are equipped with manually adjustable 
ball valves, which allow the corresponding pump to be 
closed or open. The three levels x~, x2 and x3 are 
governed by the constraint xl > x3 > x2 ; the process 
model is given by the equation (19). 

Indeed, taking into account the fundamental laws of 
conservation of the fluid, one can describe the operating 
mode of each tank; one then obtains a nonlinear model 
expressed by the following state equations (Zolghadri, 
1996): 

a dX1 (t)=-CZlSn(2g(xl(t)-x3(t)))V2+Ql(t)+Qfl"ff(t) 
dt 

a dx2 (t) =o~3Sn (2g(x 3 (t)_x2 (t)))v'2 -o~2Sn (2gx2 (t)) 
1/2 

dt 
+Qz (t)+Qfz-ff(t) (19) 

a dx3 (t)=(ZlSn(Zg(x, (t)-x3(t))) t/2 
dt 

-0~3S n (2g(x 3 (t)--X 2 (t)))v2 +~3~(t ) 

w h e r e  (Zl, (x 2 and a 3 are constants, ~(t) is regarded 
as an unknown input. Qf/fi(t),ie{1 ..... 3} denote the 
additional mass flows into the tanks caused by leaks and 
g is the gravity constant. 

The multiple model (1), with ~(t)=u(t), which 
approximates the nonlinear system (19), is described by: 

4 

2(t)=~.,g~(u(t))(a~x(t)+B~u(t)+f-~(t)+O~) (2O) 
i=1 

y(O=Cx(O 

~Q1, Q2+ 

i i iii   iiiii iiiiiii  ii  !  
:i:!:i:!:!', i:i:i:i: ::::::::::::::::::::: !:i:i:i~¢!:!:i 
!iiiiii!ii iii!iii! iiii!i!i!i!i!i!i!i! iii!iiiii!i!i!i!iii L 
i!!iiiiiii ii!i!ii!.:.:.:.:.:.:.::!i!i!i!i!i!!!i!i!i!.:.:.:.:::::::.~:~:;:I:~:~:~:::.:.:.:.~ 
:i:i:i:i:i: :i:!:i:i ~ i i ~ !  SH 

V V V 
Qf~a(t) Qf3a(t) Qf~a(t) 

Figure 1. Three tank system 

The matrices ~., B i and D~ are calculated by linearizing 
the initial system (19) around four points chosen in the 
operation range of the system. Four local models have 
been selected in an heuristic way. That number 
guarantees a good approximation of the state of the real 
system by the multiple model. The following numerical 
values were obtained: 

-0.0109 0 0.0109 ] [-2.861 
AI= 0 -0.0206 0.0106 D,=10-3|-0.38[ 

0.0109 0.0106 -0.0215 L 0.11 J 
/ / 

I000'' 0 00'' t 
A 2 = -0.0205 0.01044 D 2 = 10 -3 -0.34 

LO.011 0.01044-0.0215 LO.O38j 
-0.0084 0 0.0084] [-3.70] 

A3= 0 -0.0206 0.0095~ D3=10-31-0.14 / 

0.0084 0.0095 -O.O18J L 0.69 J 

F-0.0085 0 0.0095~ 0 . 0 0 8 5 ] ,  • F-3.671 
Z 4 =  -0.0205 On - 10-~[-0 .18[  

L 0.0085 0.0095 -0.0183 L 0.62 ] 

Bi= C = 1  0 -1 

In the following, the functions Qfl, Qf2 and Qf3 are 
constant, E(t) is a random sequence and the numerical 
application are performed with: 

Qf/= 10 -4, v i E {1 ..... 4} and t e [0 ,x,[ 
~1 = 0.78, ~2 = 0.78 and ~3 = 0.75 
g=9.8, S n=5xlO -s and A=0.0154 

Determination of the multiple observer 

The structure of the multiple observer is defined in (4). 
The matrix P is obtained by solving (9) 

1 - 1  2 
P = - 3  -1  -1  

The observability of the pairs (PAi,C) is checked. To 

obtain the matrices K0i and X0/, one can proceed in the 
following way. 
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1- One chooses as initial values: 

I 
1.24 -0.003 -0.005] [3.2 4.4 ] 

Xo] = -0.003 1.12 0.035 ~ Kol = 10 -2 0.5 -3.2 

-0.005 0.035 1.17 _J 2.4 -0.06 ii 4 000 0004  441 
X02 = -0.005 1.13 0.036/' K°2 = 10-2 0.46 -3.2 

-0.004 0.036 1.17 J 2.4 -0.06 

[ ' r 1 
1.24 -0.006 -0.005] 3.5 4.7 

Xo3 - --0.006 1.12 0.037 ~ Ko3 = 10 -2 0.2 -3.4 

-0.005 0.037 1.17 J L0.26 -0.16 

xo4 = -0.007 1.12 0.037~ Ko4 = 10 -2 0.16 -3.5 

0.001 0.037 1.17 J L0.26 -0.13 

2- For each local observer, the poles are placed in the 
area S(c~,13), with o~ =0.01 a n d / 3 = 0 . 2 .  

3- The matrices X0i are then calculated ; starting from 
the equations (15), (17) and (18), one obtains" 

E ) E ;,4'1 
1.9 17 -8.8 -5.4 

~X 1=10 -3 17 4.3 -2.5 OK 1=10 -4 5.6 

- 8 . 8 - 2 . 5  11 -0.9 -2.7J 

I 
3.7 9.3 

()X 2 - - 1 0  -3 9.3 5.3 
-4.7 -1.5 

-4.7 [ -21  -371 

L-0.9 -23 

144 3,9 190] i90 13] 
OX 3=10 -3 38.9 -1.4 -2.4 OK 3=10 -4 11.4 11.6 

-19.6 -2.4 12.3 -3.7 -5.7 

[-5.5 45.6 -23113 1-11 36 j-14"6] c)X4=10 -3 45.6 -3.4 -2 .5 ,  c)K4=10 -4 13 1 

-23 -2.5 L-4.5 - 

The constraint on the proximity of the solution in the 
vicinity of goi and Xoi .is respected, while imposing: 

II K/ll II°x/I--- l--0.02 and =0.03. 
IIx0i[I IIK0ill 

The obtained results show the effectiveness of the design 
algorithm of the multiple observer with unknown inputs. 
Figure 2 visualizes the two known inputs applied to the 
system as well as the unknown input. Figure 3 compares 
the states of the system reconstructed by the multiple 
observer with the corresponding states of the multiple 
model ; Figure 4 compares the states of the system 
reconstructed by the multiple observer with the 
corresponding states of nonlinear system ; the quality of 
the reconstruction is also highlighted on the figure 5 
which visualizes the errors of the reconstructed states (the 
variations noted in the proximity of the time origin are 
due to the initial conditions of the observer which have 
been arbitrarily chosen). One notices however, the 
convergence of the multiple observer and the negligeable 
error between the real variables and the estimated 
variables. 

Remark 

A easy way to compute the initial values Koi and Xoi 
may be proposed: 

- Initial values of the gains goi a r e  determined by a 
technique of pole assignment such as each gain is 
calculated independently of the others. 

- The initial matrices Xoi a r e  calculated by using the 
Lyapunov approach. 

x 10 4 

~51 ' ' ' ~ i r ~  . . . . .  

1 

0.5 

0 
0 50 100 150 200 250 300 350 400 450 500 
x 105 

' ' 'rl ' ' 

2 

1.5 

I 
0 50 100 150 2130 250 300 350 400 450 500 

0.06 

0.04 

0.02 

0 
0 

i i i i i i ! i i 

i 

50 1~ 150 200 250 300 350 400 450 500 

Figure 2. Inputs of the system 

i i i i i i i i i i 

I 

0,3 
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0,4 

0"20 

0 200 400 600 800 1 0 0 0  1200  1400  1030  1E}0 3300 

0,8 i i i ! i i i ! i 

0.6 
x3 rrullJple ~ and x3 eslirr~ed 

0.4 I I I I J J I t I 
0 200 400 600 800 11300 1200 1400 1600 1800 21300 

Figure 3. Multiple model (20) and 
multiple observer (2) 
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i I I I i ! i t ! ! 

1 

0.8 

0"6f , , J , , , l l i 

0 2130 400 600 800 I(B0 1200 1400 1030 1800 3000 

i i ! i ! i i i i ! 

0.4 

0.11'9 t , i i i t i i 
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Figure 4. Nonlinear system (19) 
and multiple observer (2) 
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5. CONCLUSION 

Using a multiple model representation, we showed how 
to design a multiple observer using the principle of the 
interpolation of local observers. Moreover, one 
considered the case where some inputs of the system 
were unknown. The calculation of the gain of the global 
observer reduces to the calculation of the gains of the 
local observers ; the stability of the whole requires taking 
into account the coupling constraints between the local 
observers, which leads to the resolution of a problem of 
the B MI (Bilinear Matrix Inequalities) type. The 
resolution of these BMI constraints is carried out by 
linearization and the essential numerical disadvantage of 
this method only resides in the choice of the initial 
variables of matrices K i and X i . 

The direct application of this observer could be, thanks to 
taking into account the unknown inputs, the base for the 
design of a detection procedure and localization of faults 
of actuators. 
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