Process input estimation with a multimodel. Application to communication

AKHENAK Abdelkader, MAQUIN Didier, RAGOT Jos
Centre de Recherche en Automatique de Nancy, CNRS UMR 7039
Institut National Polytechnique de Lorraine
2, Avenue de la forêt de Haye, 54516 Vandœuvre-les-Nancy Cedex, FRANCE
{Abdelkader.Akhenak, Jose.Ragot, Didier.Maquin}@ensem.inpl-nancy.fr

Abstract

This paper is dedicated to the synthesis of a multiple observer. The considered system is itself represented by a (nonlinear) multiple model with unknown inputs. Stability conditions of such observer are expressed in terms of linear matrix inequalities (LMI). An example of simulation is given to illustrate the proposed method.

1 Introduction

A physical process is often subjected to disturbances which have as origin the noises due to its environment, uncertainty of measurements, fault of sensors and/or actuators. These disturbances have harmful effects on the normal behavior of the process and their estimation can be used to conceive a control strategy able to minimize their effects. The disturbances are called unknown inputs when they affect the input of the process and their presence can make difficult the state estimation.

In the linear system framework, observers can be designed for singular systems, unknown input systems, delay systems and also uncertain system with time-delay perturbations [8]. Several works were also achieved concerning the estimation of the state and the output in the presence of unknown inputs. They can be gathered into two categories. The first one supposes an a priori knowledge of information on these nonmeasurable inputs; in particular, Johnson [12] proposes a polynomial approach and Meditch [16] suggests approximating the unknown inputs by the response of a known dynamic system. The second category proceeds either by estimation of the unknown inputs, or by their complete elimination from the equations of the system.

Among the techniques that do not require the elimination of the unknown inputs, Wang [17] proposes an observer able to entirely reconstruct the state of a linear system in the presence of unknown inputs and in [5],[13],[15], to estimate the state, a model inversion method is used. Using the Walcott and Zak structure observer [17], Edwards et al. [6],[7] have also designed a convergent observer using the Lyapunov approach. Other techniques are based on the elimination of the unknown inputs [9],[14].

However, the real physical systems are often nonlinear. As it is delicate to synthesize an observer for a nonlinear system, we preferred to represent these systems with a multiple model. The idea of the multiple model approach is to apprehend the total behavior of a system by a set of local models (linear or affine), each local model characterizing the behavior of the system in a particular zone of operation. The local models are then aggregated by means of an interpolation mechanism.

In the case of a nonlinear system affected by unknown inputs and described by a multiple model, a technique for multiple model state estimation by using a multiple observer with sliding mode has already been proposed [1],[4].

In this paper, we consider the state estimation of an uncertain multiple model with unknown input. For that purpose a multiple observer based on convex interpolation of classical Luenberger observers [2] involving additive terms used to overcome the uncertainties is designed. Using quadratic Lyapunov function, sufficient asymptotic stability conditions are given in LMI formulation [3].

Notation: Throughout the paper, the following useful notation is used: \(X^T \) denotes the transpose of the matrix \(X \), \(X > 0 \) means that \(X \) is a symmetric positive definite matrix, \(I_M = \{1, 2, \ldots, M\} \) and \(\|\cdot\| \) represents the Euclidean norm for vectors and the spectral norm.
for matrices.

2 State and input estimation using a multimodel

In this work, we consider the estimation of the state vector and the unknown inputs of a nonlinear system represented by a multiple model and subject to the influence of unknown inputs, by using a multiple observer. This multiple observer is based on local Luenberger observers including a sliding term to compensate the effect of the unknown inputs.

2.1 Multiple model structure

Let us consider a nonlinear system represented by the following multiple model (with M local models) subject to unknown inputs:

\[
\begin{align*}
 x(t+1) &= \sum_{i=1}^{M} \mu_i(\xi(t))(A_i x(t) + B_i u(t)) + R_i \ddot{u}(t) + D_i \\
 y(t) &= C x(t) + F \ddot{u}(t)
\end{align*}
\]

with:

\[
\begin{align*}
 \sum_{i=1}^{M} \mu_i(\xi) &= 1 \\
 0 &\leq \mu_i(\xi) \leq 1 \quad \forall i \in \{1, \ldots, M\}
\end{align*}
\]

where \(x(t) \in \mathbb{R}^n \) is the state vector, \(u(t) \in \mathbb{R}^m \) the input vector, \(\ddot{u}(t) \in \mathbb{R}^q, q < n \), contains the unknown input and \(y(t) \in \mathbb{R}^p \) gather the measured outputs. The \(\text{ith} \) ” local model” uses \(A_i \in \mathbb{R}^{n \times n} \) as the state matrix, \(B_i \in \mathbb{R}^{n \times m} \) for the input influence matrix, \(R_i \in \mathbb{R}^{n \times q} \) for the unknown input influence matrix and \(D_i \in \mathbb{R}^{n \times 1} \) is introduced to take into account the functioning point of the system; \(C \in \mathbb{R}^{p \times n} \) and \(F \in \mathbb{R}^{p \times q} \). At last, \(\xi(t) \) is the so-called decision vector which may depend on the known input and/or the measured state variables.

At each time, \(\mu_i(\xi(t)) \) quantifies the relative contribution of each local model to the construct the global model. Chosing the number \(M \) of local models of that multimodel may be intuitively achieved with taking account of the number of regimes when the system is running. However, determining the matrices \(A_i, B_i, R_i \) and \(D_i \) needs the use of specific techniques [10]. For a practical point of view, the matrices \(A_i, B_i, R_i \) and \(D_i \) are those used to describe the local functioning around the \(\text{imc} \) regime. Indeed, that is exactly the case at the \(\text{ith} \) functioning regime, where \(\mu_i(\xi(t)) = 1 \) and \(\mu_j(\xi(t)) = 0, j \neq i \). Indeed, the functions \(\mu_i \) will take their values upon the set \([0, 1]\) and thus the activation of a local model is criticable. It is preferable to say that the multimodel is a weighting sum of models; at a particular time \(t \) the active part of the model comes from a particular weighting of local models.

The problem to be solved here is the one of the simultaneous reconstruction of the state variable \(x \) and the unknown input \(\pi \) when only using the information available in the known input \(u \) and in the measured output \(y \).

2.2 Design of a multiobserver

In this section, we explain how to design the observer. The structure of that observer results of the aggregation of local observers [4] and the obtained analytical form is particularly adapted for studying the stability and the convergence property of the state reconstruction error.

The numerical aspects related to the determination of the gains of the observer will be also analysed. The so-called multi-observer (1) has the following structure:

\[
\begin{align*}
 z(t+1) &= \sum_{i=1}^{M} \mu_i(\xi(t))(N_{i1} z(t) + G_{i1} u(t) + G_{i2} y(t)) \\
 &\quad + L_i y(t)) \\
 \hat{x}(t) &= z(t) - E y(t)
\end{align*}
\]

where \(N_i \in \mathbb{R}^{m \times n}, G_{i1} \in \mathbb{R}^{m \times m}, L_i \in \mathbb{R}^{m \times p} \) is the gain of the \(\text{ith} \) local observer, \(G_{i2} \in \mathbb{R}^{m} \) is a constant vector and \(E \) is a matrix transformation. Indeed, the observer only uses known variables \(u \) and \(y \), \(\ddot{u} \) being non measured. This whole set of matrices has to be properly defined, and mainly on a numerical point of view, the objective being to ensure the convergence of the estimated state towards the true state. For that purpose, let us define the state estimation error:

\[
e(t) = x(t) - \hat{x}(t)
\]

From that definition and using the expression of \(\hat{x}(t) \) given by equation (2), the dynamic error can be written:

\[
e(t) = (I + EC)x(t) - z(t) + EF \pi(t)
\]

Then, one expresses the time evolution of the state error in order to analyse its convergence towards zero. Thus, at time \(t + 1 \), the state error is expressed:

\[
e(t + 1) = \sum_{i=1}^{M} \mu_i(\xi(t)) \left(P(A_i x(t) + B_i u(t)) + R_i \ddot{u}(t) + D_i - N_{i1} z(t) - G_{i1} u(t) - G_{i2} L_i y(t) \right) + EF \pi(t + 1)
\]
with:
\[P = I + EC \] (6)

Replacing \(y(t) \) and \(z(t) \) by their respective expressions given by (1) and (2), the state error takes the form:
\[
e(t + 1) = \sum_{i=1}^{M} \mu_i(\xi(t)) \left(N_i e(t) + (PA_i - N_i P - L_i C)x(t) + (PB_i - G_{i1})u(t) + (PD_i - G_{i2}) + (PR_i - L_i F)\bar{u}(t) \right) + EF\bar{u}(t + 1)\]

(7)

If the following conditions are fulfilled:
\[
\begin{align*}
P &= I + EC \\
N_i P &= PA_i - L_i C \\
PR_i &= L_i F \\
G_{i1} &= PB_i \\
G_{i2} &= PD_i \\
EF &= 0
\end{align*}
\]

(8)
equation (7) reduces to:
\[
e(t + 1) = \sum_{i=1}^{M} \mu_i(\xi(t))N_i e(t)
\]

(9)

A simplification that will be further used is proposed. It is straightforward to verify that (8) may be written with the help of the matrix \(K_i \):
\[
\begin{align*}
P &= I + EC \\
N_i &= PA_i - K_i C \\
K_i &= N_i E + L_i \\
PR_i &= K_i F \\
G_{i1} &= PB_i \\
G_{i2} &= PD_i \\
EF &= 0
\end{align*}
\]

(10)

The rate decay of the state error estimation is depending on the matrix \(N = \sum_{i=1}^{M} \mu_i(\xi)N_i \) and it is important to note that the stability of matrices \(N_i \), \(\forall i \in \{1, ..., M\} \) does not prove the stability of \(N \). That point will be analysed in the next section. Thus, the constraints (10) allow to synthesis the observer of a system with unknown inputs. However, for some applications (for example in diagnosis), the estimation of the unknown input \(\bar{u} \) has to be performed. That point will be addressed in the next section 2.4. Moreover, the stability of the matrix \(N \) needs to be respected with taking account of all the matrix constraints (8); that technical point is the aim of section 2.3.

2.3 Global convergence of the multiple observe

In this part, sufficient conditions of the asymptotic global convergence of the state estimation error are established. As expressed by the model of the state error estimation, (9), the convergence is strongly depending on the matrix \(N = \sum_{i=1}^{M} \mu_i(\xi(t))N_i \).

Theorem [2]: The state estimation error between the multiple model (1) and the unknown input multiple observer (2) converges towards zero, if all the pairs \((A_i, C) \) are observables, the matrix \(F \) is of full column rank and if the following conditions hold \(\forall (i, j) \in \{1, ..., M\} \):

\[
N_{i}^{T} N_{j} - X < 0 \quad (11a)
\]

\[
N_{i} = PA_{i} - K_i C \quad (11b)
\]

\[
P = I + EC \quad (11c)
\]

\[
PR_{i} = K_i F \quad (11d)
\]

\[
EF = 0 \quad (11e)
\]

\[
L_{i} = K_{i} - N_{i} E \quad (11f)
\]

\[
G_{i1} = PB_{i} \quad (11g)
\]

\[
G_{i2} = PD_{i} \quad (11h)
\]

where \(X \in \mathbb{R}^{n \times n} \) is a positive definite symmetric matrix.

The proof of that theorem may be found in [2]. Let us just note that the stability condition of \(N \) is expressed by the matrix inequalities (11a). The conditions (11b) to (11h) may be seen as an equivalent form of the constraints (10). The system (10) contains bilinear matrix inequalities (11a), that must be solved while taking into account some equality constraints. Let us note that equations (11f), (11g) and (11h) are only used to compute the gains \(L_{i}, G_{i1}, \) and \(G_{i2} \) since matrices \(X, N_{i}, P, K_{i}, \) and \(E \) will be known.

2.4 Unknown input estimation

We have previously shown that the convergence of the multiple observer (2) is guaranteed if the conditions (10) are verified and the pairs \((A_i, C) \) are observable. Under steady state condition, the state estimation error tends towards zero; then substituting the true state \(x \) by its estimate \(\hat{x} \) in equation (1), the input \(\bar{u} \) is replaced by
its estimation \(\hat{u} \):

\[
\begin{align*}
\hat{x}(t + 1) &= \sum_{i=1}^{M} \mu_i(\xi(t)) (A_i \hat{x}(t) + B_i u(t) + D_i) \\
R_i \hat{u}(t) + D_i \\
y(t) &= C \hat{x}(t) + F \hat{u}(t)
\end{align*}
\]

The unknown input \(\hat{u} \) is then estimated by using the whole set of equations (11):

\[
\hat{u}(t) = (W^T W)^{-1} W^T \begin{pmatrix} \hat{x}(t + 1) \\ y(t) - C \hat{x}(t) \end{pmatrix}
\]

with

\[
\hat{x}(t + 1) = \hat{x}(t) + \sum_{i=1}^{M} \mu_i(\xi(t)) (A_i \hat{x}(t) + B_i u(t) + D_i)
\]

assuming that the matrix

\[
W = \begin{pmatrix} \sum_{i=1}^{M} \mu_i(\xi(t)) R_i \\ F \end{pmatrix}
\]

is of full column rank. Summarizing the estimation procedure, two steps are needed: the first one is dedicated to the state estimation using the observer (2), the second is devoted to the unknown input estimation using the estimated state (12). The condition allowing to express the matrices of the observer are linked to the rank of \(W \) and is sometime difficult to satisfy. However, for the secure communication application (section 3), the constraint may be easily fulfilled since we have also to design the observer but also the process itself.

2.5 Resolution method for determining the observer matrices

When analysing the different constrains, (11e) completely determine the matrix \(E \) of the observer. Noting \(F^{(-)} \) a generalised inverse of \(F \), \(E \) may be deduced:

\[
E = I - FF^{(-)}
\]

As a consequence, the matrix \(P \) may be deduced from (11c). Then, the matrix inequalities (11a) have to be solved after substituting the matrix \(N_i \) by its value derived from (11b), and taking into account the equality constraint (16).

\[
N_i^T X N_j - X = (P A_i - K_i C)^T X (P A_j - K_j C) - X < 0
\]

which is equivalent to:

\[
\begin{pmatrix} X \\ X(P A_j - K_j C) \end{pmatrix}(P A_i - K_i C)^T X > 0
\]

Using the following change of variables:

\[
W_i = X K_i
\]

(11d) is rewritten:

\[
\begin{pmatrix} X \\ X P A_j - W_j C \end{pmatrix}(P^T X - C^T W^T_i X) > 0
\]

The system being linear in respect to the unknown matrices \(X \) and \(W_i \), conventional LMI tools (LMI MATLAB Toolbox for example) may be extensively used for that resolution. The other matrices defining the observer are then deduced knowing \(E, P, X \) and \(W_i \):

\[
\begin{align*}
G_{i1} &= P B_i \\
G_{i2} &= P D_i \\
K_i &= X^{-1} W_i \\
N_i &= P A_i - K_i C \\
L_i &= K_i - N_i E
\end{align*}
\]

3 Application to communication

Let us consider a discrete SISO multimodel resulting of the aggregation of two local models:

\[
\begin{align*}
x(t + 1) &= \sum_{i=1}^{2} \mu_i(\xi(t)) (A_i x(t) + R_i \hat{u}(t)) \\
y(t) &= C x(t) + F \hat{u}(t)
\end{align*}
\]

The system (19) has the particularity to be controled by the unique input \(\hat{u}(t) \) and its output \(y(t) \) is the input of another observer. The activation functions are expressed with exponential functions and only depend on the multimodel output \((\xi(t) = y(t)) \):

\[
\begin{align*}
(\xi(t) &= y(t) \\
\mu_1(\xi(t)) &= \frac{1}{2} (1 - \tanh(\xi(t))) \\
\mu_2(\xi(t)) &= 1 - \mu_1(\xi(t))
\end{align*}
\]

Applying results given in section 2.5, the observer is defined by:

\[
\hat{x}_{k+1} = \sum_{i=1}^{M} \mu_i(\xi(t))(N_i \hat{x}(t) + K_i y_k)
\]

with the definitions:

\[
\begin{align*}
E &= 0 \\
P &= I \\
R_i &= K_i F \\
N_i &= A_i - K_i C \\
L_i &= K_i
\end{align*}
\]
The numerical values of matrices are as follows:

\[
A_1 = \begin{bmatrix}
0 & 0.4 & 1 \\
-1.12 & 0.4 & 0 \\
-0.8 & 0 & 0.9
\end{bmatrix},
\]

\[
A_2 = \begin{bmatrix}
0 & 0.4 & 1 \\
1 & 0.4 & 0 \\
-0.8 & 0 & 0.9
\end{bmatrix},
\]

\[
C = \begin{bmatrix}
0.15 & 0 & 0
\end{bmatrix},
F = 50
\]

The figure 1 shows the signal \(y \) transmitted to the observer and the message contained in \(y \). The figure 2 compares the true and the estimated states of the system. The figure 3 depicts the trajectory of the system; as there are 3 states, the trajectory is drawn in the plans \(\{x_1(t), x_2(t)\} \), \(\{x_2(t), x_3(t)\} \) and \(\{x_3(t), x_1(t)\} \); thus it is possible to appreciate the "chaotic" behaviour of the system. The figure 4 presents the estimated message, the true message and the mixing function \(\mu \). Excepted around the time origine (du to inappropriate initial conditions), the estimated message fully agree with the true one.

4 Conclusion

In this communication, we propose a method for estimating the state of a non linear discrete system; this system is modeled by a multimodel in which some input are unknown. The calculation of the gain of the global observer reduces to the calculation of the gains of the local observers ; the stability of the whole requires taking into account the coupling constraints between the local observers, which leads to the resolution of a LMI (Linear Matrix Inequality) problem.

A particular, but up to date, application of the proposed method deals with decryption communication; the objective is to recover a message imbedded in a signal generated by a dynamical nonlinear system. As future works, we aim to construct multimodel and associated multiobserver to ensure a chaotic time evolution of the system in such a way that the decryption of the transmitted signal will impossible without knowing the model.

References

Figure 4: True and estimated states and estimated message

linear system represented by a multiple model. 11th IFAC Symposium on Automation in Mining, Mineral and Metal processing, MMM 2004, Nancy, France, September 8-10, 2004.

