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Abstract

This paper is dedicated to the synthesis of a multiple
observer. The considered system is itselve represented
by a (nonlinear) multiple model with unknown inputs.
Stability conditions of such observer are expressed in
terms of linear matrix inequalities (LMI). An exam-
ple of simulation is given to illustrate the proposed
method.

1 Introduction

A physical process is often subjected to disturbances
which have as origin the noises due to its environment,
uncertainty of measurements, fault of sensors and/or
actuators. These disturbances have harmful effects on
the normal behavior of the process and their estimation
can be used to conceive a control strategy able to
minimize their effects. The disturbances are called
unknown inputs when they affect the input of the
process and their presence can make difficult the state
estimation.

In the linear system framework, observers can be de-
signed for singular systems, unknown input systems,
delay systems and also uncertain system with time-
delay perturbations [8]. Several works were also
achieved concerning the estimation of the state and the
output in the presence of unknown inputs. They can be
gathered into two categories. The first one supposes an
a priori knowledge of information on these nonmeasur-
able inputs; in particular, Johnson [12] proposes a poly-
nomial approach and Meditch [16] suggests approxi-
mating the unknown inputs by the response of a known
dynamic system. The second category proceeds either
by estimation of the unknown inputs, or by their com-
plete elimination from the equations of the system.

Among the techniques that do not require the elimi-
nation of the unknown inputs, Wang [17] proposes an
observer able to entirely reconstruct the state of a lin-
ear system in the presence of unknown inputs and in
[5],[13],[15], to estimate the state, a model inversion
method is used. Using the Walcott and Zak structure
observer [17], Edwards et al. [6],[7] have also designed
a convergent observer using the Lyapunov approach.
Other techniques are based on the elimination of the
unknown inputs [9],[14].
However, the real physical systems are often nonlinear.
As it is delicate to synthesize an observer for a non-
linear system, we preferred to represent these systems
with a multiple model. The idea of the multiple model
approach is to apprehend the total behavior of a system
by a set of local models (linear or affine), each local
model characterizing the behavior of the system in a
particular zone of operation. The local models are then
aggregated by means of an interpolation mechanism.
In the case of a nonlinear system affected by unknown
inputs and described by a multiple model, a technique
for multiple model state estimation by using a multiple
observer with sliding mode has already been proposed
[1],[4].
In this paper, we consider the state estimation of an
uncertain multiple model with unknown input. For that
purpose a multiple observer based on convex interpo-
lation of classical Luenberger observers [2] involving
additive terms used to overcome the uncertainties
is designed. Using quadratic Lyapunov function,
sufficient asymptotic stability conditions are given in
LMI formulation [3].

Notation: Throughout the paper, the following useful
notation is used: XT denotes the transpose of the ma-
trix X , X > 0 means that X is a symmetric positive
definite matrix, IM = {1, 2, ..., M} and ‖.‖ represents
the Euclidean norm for vectors and the spectral norm
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for matrices.

2 State and input estimation using
a multimodel

In this work, we consider the estimation of the state
vector and the unknown inputs of a nonlinear system
represented by a multiple model and subject to the in-
fluence of unknown inputs, by using a multiple ob-
server. This multiple observer is based on local Luen-
berger observers including a sliding term to compensate
the effect of the unknown inputs.

2.1 Multiple model structure

Let us consider a nonlinear system represented by the
following multiple model (with M local models) sub-
ject to unknown inputs :














x(t + 1) =
M
∑

i=1
µi(ξ(t))

(

Aix(t) + Biu(t)+

Riū(t) + Di

)

y(t) = Cx(t) + F ū(t)

(1)

with :
{

∑M
i=1 µi(ξ) = 1

0 ≤ µi(ξ) ≤ 1 ∀ i ∈ {1, .., M}

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the
input vector, ū(t) ∈ IRq , q < n, contains the un-
known input and y(t) ∈ Rp gather the measured out-
puts. The ith ” local model” uses Ai ∈ Rn×n as the
state matrix, Bi ∈ Rn×m for the input influence ma-
trix, Ri ∈ Rn×q for the unknown input influence ma-
trix and Di ∈ Rn×1 is introduced to take into account
the functionning point of the system; C ∈ Rp×n and
F ∈ Rp×q . At last, ξ(t) is the so-called decision vec-
tor which may depend on the known input and/or the
measured state variables.

At each time, µi(ξ(t)) quantifies the relative contri-
bution of each local model to the construct the global
model. Chosing the number M of local models of that
multimodel may be intuitively achieved with taking
account of the number of regimes when the system is
runing, However, determining the matrices Ai, Bi, Ri

and Di needs the use of specific technics [10]. For a
practical point of wiev, the matrices Ai, Bi, Ri and
Di are those used to describe the local functionning
around the ime regimet. Indeed, that is exactly the case
at the ith fonctioning regime, where µi(ξ(t)) = 1 and
µj(ξ(t)) = 0, j %= i. Indeed, the functions µ will take
their values upon the set [0, 1] and thus the activation

of a local model is criticable. It is preferable to say
that the multimodel is a weighting sum of models ; at
a particular time t the active part of the model comes
from a particular weighting of local models.

The problem to be solved here is those of the simulta-
neous reconstruction of the state variable x and the un-
known input u when only using the information avail-
able in the known input u and in the measured output y.

2.2 Design of a multiobservateur

In this section, we explain how to design the observer.
The structure of that observer results of the agregation
of local observers [4] and the obtained analytical form
is particularly adapted for studying the stability and the
convergence property of the state reconstruction error.
The numerical aspects related to the determination of
the gains of the observer will be also analysed. The so-
called multi-observer (1) has the following sttructure:















z(t + 1) =
M
∑

i=1
µi(ξ(t))

(

Niz(t) + Gi1u(t) + Gi2

+Liy(t)
)

x̂(t) = z(t) − Ey(t)
(2)

where Ni ∈ Rn×n, Gi1 ∈ Rn×m, Li ∈ Rn×p is the
gain of the ith local observer, Gi2 ∈ Rn is a constant
vector and E is a matrix transformation. Indeed, the ob-
server only uses known variables u and y, ū being non
measured. This whole set of matrices has to be prop-
erly defined, and mainly on a numerical point of wiev,
the objective being to ensure the convergence of the es-
timated state towards the true state. For that purpose,
let us define the state estimation error :

e(t) = x(t) − x̂(t) (3)

From that definition and using the expression of x̂(t)
given by equation (2), the dynamic error can be written:

e(t) = (I + EC)x(t) − z(t) + EFu(t) (4)

Then, one expresses the time evolution of the state error
in order to analyse its convergence towards zero. Thus,
at time t + 1, the state error is expressed :

e(t + 1) =
M
∑

i=1

µi(ξ(t))
(

P
(

Aix(t) + Biu(t)+

Riū(t) + Di

)

− Niz(t) − Gi1u(t)−

Gi2 − Liy(t)
)

+ EFu(t + 1)

(5)
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with :

P = I + EC (6)

Replacing y(t) and z(t) by their respective expressions
given by (1) and (2), the state error takes the form :

e(t + 1) =
M
∑

i=1

µi(ξ(t))
(

Nie(t) +
(

PAi − NiP

− LiC
)

x(t) + (PBi − Gi1)u(t)+

(PDi − Gi2) +
(

PRi − LiF )ū(t)
)

+

EFū(t + 1)
(7)

If the following conditions are fullfilled :































P = I + EC
NiP = PAi − LiC
PRi = LiF
Gi1 = PBi

Gi2 = PDi

EF = 0

(8)

equation (7) reduces to :

e(t + 1) =
M
∑

i=1

µi(ξ(t))Nie(t) (9)

A simplification that will be further used is proposed. It
is straightforward to verify that (8) may be writen with
the help of the matrix Ki:







































P = I + EC
Ni = PAi − KiC
Ki = NiE + Li

PRi = KiF
Gi1 = PBi

Gi2 = PDi

EF = 0

(10)

The rate decay of the state error estimation is de-
pending on the matrix N =

∑M
i=1 µi(ξ)Ni and it

is important to note that the stability of matrices Ni,
∀ i ∈ {1, ..., M} does note prove the stability of N .
That point will be analysed in the next section. Thus,
the constraints (10) allow to synthesis the observer of a
system with unknown inputs. However, for some appli-
cations (for example in diagnosis), the estimation of the
unknown input ū has to be performed. That point will
be adressed in the next section 2.4. Moreover, the sta-
bility of the matrix N needs to be respected with taking
account of all the matrix constraints (8); that technical
point is the aim of section ??.

2.3 Global convergence of the multiple ob-
serve

In this part, sufficient conditions of the asymptotic
global convergence of the state estimation error are
established. As expressed by the model of the state
error estimation, (9), the convergence is strongly
depending on the matrix N =

∑M
i=1 µi (ξ(t)) Ni.

Theorem [2] : The state estimation error between the
multiple model (1) and the unknown input multiple
observer (2) converges towards zero, if all the pairs
(Ai, C) are observables, the matrix F is of full col-
umn rank and if the following conditions hold ∀ (i, j) ∈
{1, ..., M} :

NT
i XNj − X < 0 (11a)

Ni = PAi − KiC (11b)

P = I + EC (11c)

PRi = KiF (11d)

EF = 0 (11e)

Li = Ki − NiE (11f)

Gi1 = PBi (11g)

Gi2 = PDi (11h)

where X ∈ IRn×n is a positive definite symmetric
matrix.

The proof of that theorem may be found in [2]. Let us
just note that the stability condition of N is expressed
by the matrix inequalities (11a). The conditions (11b)
to (11h) may be seen as an equivalent form of the con-
straints (10). The system (10) contains bilinear ma-
trix inequalities (11a), that must be solved while taking
into account some equality constraints. Let us note that
equations (11f), (11g) and (11h) are only used to com-
pute the gains Li, Gi1 and Gi2 since matrices X , Ni,
P , Ki and E will be known.

2.4 Unknown input estimation

We have previously shown that the convergence of the
multiple observer (2) is guaranteed if the conditions
(10) are verified and the pairs (Ai, C) are observable.
Under steady state condition, the state estimation error
tends towards zero; then substituting the true state x by
its estimate x̂ in equation (1), the input ū is replaced by
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its estimation ˆ̄u:


















x̂(t + 1) =
M
∑

i=1
µi(ξ(t))

(

Aix̂(t) + Biu(t)+

Ri ˆ̄u(t) + Di

)

y(t) = Cx̂(t) + F ˆ̄u(t)
(12)

The unknow input ū is then estimated by using the
whole set of equations (11) :

ˆ̄u(t) = (WT W )−1WT

(

x̃(t + 1)
y(t) − Cx̂(t)

)

(13)

with

x̃(t+1) = x̂(t+1)−
M
∑

i=1

µi(ξ(t)) (Aix̂(t) + Biu(t) + Di)

assuming that the matrix

W =





M
∑

i=1
µi (ξ(t)) Ri

F



 (14)

is of full column rank. Summarizing the estimation pro-
cedure, two steps are needed: the first one is dedicated
to the state estimation using the observer (2), the sec-
ond is devoted to the unknown input estimation using
the estimated state (12). The condition allowing to ex-
press the matrices of the observer are linked to the rank
of W and is sometime difficult to satisfy. However, for
the secure communication application (section 3), the
constraint may be easily fullfilled since we have also to
design the observer but also the process itself.

2.5 Resolution method for determining the
observer matrices

When analysing the different constrains, (11e) com-
pletely determine the matrix E of the observer. Noting
F (−) a generalised inverse of F , E may be deduced:

E = I − FF (−) (15)

As a consequence, the matrix P may be deduced from
(11c). Then, the matrix inequalities (11a) have to be
solved after substituting the matrix Ni by its value de-
rived from (11b), and taking into account the equality
constraint (16).

NT
i XNj − X = (PAi − KiC)T X(PAj − KjC) − X < 0

(16)
which is equivalent to:

(

X (PAi − KiC)T X
X(PAj − KjC) X

)

> 0 (17)

Using the following change of variables :

Wi = XKi (18)

(11d) is rewriten :
(

X AT
i PX − CT WT

i

XPAj − WjC X

)

> 0 (19)

The system being linear in respect to the unknown
matrices X and Wi, conventionnal LMI tools (LMI
MATLAB Toolbox for exemple) may be extendly used
for that resolution. The other matrices defining the ob-
server are then deduced knowing E, P , X and Wi :

Gi1 = PBi (20a)

Gi2 = PDi (20b)

Ki = X−1Wi (20c)

Ni = PAi − KiC (20d)

Li = Ki − NiE (20e)

3 Application to communication

Let us consider a discrete SISO multimodel resulting of
the agregation of two local models:






x(t + 1) =
2
∑

i=1
µi(ξ(t))

(

Aix(t) + Riū(t)
)

y(t) = Cx(t) + F ū(t)
(21)

The system (19) has the particularity to be controled by
the unique input ū(t) and its output y(t) is the input
of th observer. The activation fonctions are expressed
with exponential fonctions and only depend on the mul-
timodel output (ξ(t) = y(t)):







ξ(t) = y(t)
µ1(ξ(t)) = 1

2 (1 − tanh(ξ(t)))
µ2(ξ(t)) = 1 − µ1(ξ(t))

(22)

Applying results given in section 2.5, the observer is
defined by:

x̂k+1 =
M
∑

i=1

µi(ξ(t))
(

Nix̂(t) + Kiyk

)

(23)

with the definitions:

E = 0 (24a)

P = I (24b)

Ri = KiF (24c)

Ni = Ai − KiC (24d)

Li = Ki (24e)
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The numerical values of matrices are as follows:

A1 =





0 0.4 1
−1.12 0.4 0
−0.8 0 0.9





A2 =





0 0.4 1
1 0.4 0

−0.8 0 0.9



 ,

C =
[

0.15 0 0
]

, F = 50

The figure 1 shows the signal y transmited to the ob-
server and the message contained in y. The figure 2
compares the true and the estimated states of the sys-
tem. The figure 3 depicts the trajectory of the system;
as there are 3 states, the trajectory is drawn in the plans
{x1(t), x2(t)}, {x2(t), x3(t)} and {x3(t), x1(t)}; thus
it is possible to appreciate the ”chaotic” behaviour of
the system. The figure 4 presents the estimated mes-
sage, the true message and the mixing function µ. Ex-
cepted around the time origine (du to unapropriate ini-
tial conditions), the estimated message fully agree with
the true one.

4 Conclusion

In this communication, we propose a method for
estimating the state of a non linear discrete system;
this system is modelized by a multimodel in which
some input are unknown. The calculation of the
gain of the global observer reduces to the calculation
of the gains of the local observers ; the stability of
the whole requires taking into account the coupling
constraints between the local observers, which leads
to the resolution of a LMI (Linear Matrix Inequalitie)
problem.

A particular, but up to date, application of the proposed
method deals with decryption communication; the
objective is to recover a message imbedded in a signal
generated by a dynamical nonlinear system. As future
works, we aim to construct multimodel and associated
multiobserver to ensure a chaotic time evolution of
the system in such a way that the decryption of the
transmitted signal will impossible without knowing the
model.
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