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Abstract: This paper presents multiple observer design for nonlinear chaotic sys-
tems with unknown inputs in multiple model approach. The considered unknown
inputs influences the states and the outputs of the system. The main objective is
to estimate the state variables as well as the unknown inputs of this system. For
that, we propose the synthesis of a multiple observer based on the elimination of
these unknown inputs. The synthesis conditions of the proposed multiple observer
are derived in linear matrix inequalities (LMI) terms. The proposed method is
applied to secure communication. An simulation example is given to illustrate the
effectiveness of the proposed synthesis conditions.
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1. INTRODUCTION

Synchronisation in chaotic systems and its po-
tential application to secure communication have
received a large attention over the last decade
(Carroll and Pecora, 1991), (Cuomo et al., 1993),
(Darouach and Boutayeb, 1995), (Nijmeijer and
Mareels, 1997), (Hasler, 1998), (Boutayeb et al.,
2002). The idea of secure communication is to
encrypt a plain text at the transmitter and de-
crypt the cipher text at the receiver. The trans-
mission channels are public in general. Therefore,
it is advisable to mask or modulate the infor-
mation within a chaotic signal and retrieve it

from the received signal. Pecora and Carroll, in
their pioneering work (Carroll and Pecora, 1991),
proposed some stable subsystems of the given
chaotic systems for constructing unidirectionally
coupled synchronization systems. After that, vast
amounts of research of chaos synchronization and
its application to secure communication have been
presented in the literature. Recently, in (Lin et al.,
2005) an adaptive robust observer-based scheme
for the synchronization of unidirectional coupled
chaotic systems with unknown channel time-delay
and system uncertainties was proposed. Liao and
Tsai (Liao and Tsai, 2000) addressed an adap-
tive observer to estimate the unknown parameter



and disturbance of a chaotic system with output
feedback term. Feki (Feki and Robert, 2003) de-
signed complete adaptive observer-based response
system to synchronize chaos with parameter un-
certainties. The above research works are essen-
tially based on classical methods to analyze and
design the synchronization of continuous-time or
discrete-time chaotic system. In this work, the
synchronization by multiple model approach is
proposed.

The basic idea of the multiple model approach
is to apprehend the total behavior of nonlinear
model by a set of LTI models (linear or affine).
The local models are then interpolated with con-
vex functions (Murray-Smith, 1997). The motiva-
tion of this approach is related to the fact that it is
often difficult to design a model which takes into
account all the complexity of the studied system.
This approach which includes the Takagi-Sugeno
(T-S) models (Takagi and Sugeno, 1985) and
Polytopic Linear Differential Inclusions (PLDI)
(Boyd et al., 1994) has been extensively consid-
ered in the last decade(see among others (Patton
et al., 1998), (Tanaka et al., 1998), (Chadli et
al., 2003) and references therein). However there
is few studies concerning the secure communica-
tion using the multiple model approach (Ting,
2005)(Li et al., 2005), (Chen et al., 2005). For ex-
ample in (Ting, 2005), authors are used an adap-
tive fuzzy observer design to synchronize chaotic
systems. The chaotic system is expressed in the
form of T–S model.

In this paper, we consider firstly the state and
unknown input estimation of chaotic system in
multiple model representation. The design of the
unknown input multiple observer is obtained by
eliminating the unknown inputs. The synthesis
conditions of the proposed structure of multiple
observer are derived in LMI terms.

The rest of this paper is organized as follows. In
section 2, the general structure of multiple model
is presented. In section 3, the considered structure
of multiple observer is given and the main results
are presented. The derived conditions ensuring
the global asymptotic convergence of estimation
error are given as a set of LMI with additional
equality constraints. A method allowing to esti-
mate the unknown input ends this section. The
last section gives a numerical example to illustrate
the effectiveness of the proposed results in secure
communication domain.

Notation: throughout the paper, the following
useful notation is used: XT denotes the transpose
of the matrix X, X > 0 means that X is a
symmetric positive definite matrix and IM =
{1, 2, ...,M}.

2. GENERAL STRUCTURE OF MULTIPLE
MODEL

Let us consider a class of nonlinear systems sub-
ject to unknown inputs and represented by a mul-
tiple model as follows:




ẋ(t) =
M∑

i=1

µi (ξ(t))
(
Aix(t) + Biu(t) + Riū(t)

)

y(t) = Cx(t) + Fū(t)
(1)

with: 



M∑

i=1

µi(ξ(t)) = 1

0 ≤ µi(ξ(t)) ≤ 1 ∀ i ∈ IM
(2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm

the input vector, ū(t) ∈ Rq, q < n, contains
the unknown input and y ∈ Rp the measured
outputs. Matrices Ai ∈ Rn×n and Bi ∈ Rn×m

denote the state matrix and the input matrix
associated to the ith local model. The matrices
Ri ∈ Rn×q and F ∈ Rp×q, with rank(F ) = q < p
are the distribution matrices of unknown inputs
and C ∈ Rp×n is the output matrix. In this
paper, the so-called decision variables ξ(t) depend
on measurable variables (known inputs and/or
measured output).

The choice of the variable ξ(t) leads to different
classes of models. It can depend on the measurable
state variables, be a function of the measurable
outputs of the system and possibly on the input.
In this case, the multiple model describes a class
of nonlinear system or a T-S model (Takagi and
Sugeno, 1985). It can also be an unknown constant
value, the multiple model then represents a PLDI
(Boyd et al., 1994).

In the following the considered problem concerns
both the reconstruction of the state variable x(t)
and the unknown input u(t), using only the avail-
able information namely the known input u(t) and
the measured output y(t).

Remark: in the following, to simplify the expres-
sion of equations, time variable (t) will be omitted.

3. MULTIPLE OBSERVER DESIGN

Multiple observer is obtained by convex interpo-
lation of numerous Luenberger observers (Patton
et al., 1998), (Tanaka et al., 1998), (Chadli et
al., 2003) (Akhenak et al., 2004). In this work,
we consider the case of continuous-time multiple
model with unknown inputs. Our goal is to esti-
mate the state and the unknown inputs of the bel-
low structure of multiple model. The considered



structure of multiple observer has the following
form: 




ż =
M∑

i=1

µi (ξ)
(
Niz + Giu + Liy

)

x̂ = z − Ey

(3)

where Ni ∈ Rn×n, Gi ∈ Rn×m, Li ∈ Rn×p are
the local observer gains, E is a transformation
matrix to be determined. This set of matrices has
to be properly defined to ensure the convergence
of the estimated state towards the true state. For
that purpose, let us define the state estimation
error:

x̃ = x− x̂ (4)

From this definition and using the expression of x̂
given by equation (3), the state estimation error
can be written:

x̃ = (I + EC)x− z + EFū

Thus, the dynamic of the state estimation error is
given as follows:

˙̃x =
M∑

i=1

µi (ξ)
(
P (Aix + Biu + Riū)−

Niz −Giu− Liy
)

+ EF ˙̄u
(5)

with:
P = I + EC (6)

Replacing y and z by their respective expressions
given by (1) and (3), the state error takes the
form:

˙̃x =
M∑

i=1

µi (ξ)
(
Nix̃ +

(
PAi −KiC −Ni

)
x+

(PBi −Gi)u +
(
PRi −KiF

)
ū

)
+ EF ˙̄u

(7)

with:
Ki = NiE + Li (8)

If the following conditions are fulfilled:

PRi = KiF (9a)
Gi = PBi (9b)
Ni = PAi −KiC (9c)

EF = 0 (9d)

where P and Ki are defined in (6) and (8) respec-
tively, the equation (7) is reduced to:

˙̃x =
M∑

i=1

µi (ξ)Nix̃ (10)

Then the state estimation error tends asymptoti-
cally towards zero if the following conditions hold
∀ i ∈ IM :

∃X > 0, NT
i X + XNi < 0 (11)

Thus, the constraints (9) and (11) allow to com-
plete synthesis of the multiple observer (3) for
the multiple model with unknown inputs (1). We
recall that the matrix F must be full column rank
and rank(F ) < p.

3.1 Global convergence of the multiple observer

In this section, sufficient conditions for global
asymptotic convergence of state estimation error
(7) are established in LMI term with additional
structural constraints.

Theorem 1. The state estimation error between
unknown input multiple model (1) and multiple
observer (3) converges globally asymptotically to-
wards zero, if there exists matrices X > 0, S
and Wi such that the following conditions hold
∀ i ∈ IM :

AT
i X + XAi + AT

i CT ST + SCAi −
WiC − CT WT

i < 0 (12a)

(X + SC)Ri = WiF (12b)
SF = 0 (12c)

Then multiple observer (3) is completely defined
by:

E = X−1S (13a)

Gi = (I + X−1SC)Bi (13b)

Ni = (I + X−1SC)Ai −X−1WiC (13c)

Li = X−1Wi −NiE (13d)

Proof : We have shown that the constraints (9)
and (11) guarantee the global asymptotic conver-
gence of the state estimation error (7). However
these constraints are nonlinear in the synthesis
variables. In order to convert these conditions into
an LMI formulation, we consider the following
change of variables:

Wi = XKi (14a)
S = XE (14b)

Taking into account the change of variable (14),
the expression (6) we get from equation (11)
equation (12a).

The two equality constraints (12b) and (12c) are
obtained by pre-multiplying constraints (9a) and
(9d) by X > 0 with the change of variables (14).

Therefore classical numerical tools may be used
for solving the LMI problem subject to linear
equality constraints (12). After having solving this
problem and based on the definitions (9), the
different matrices defining the proposed observer
can be deduced from the knowledge of X, S



and Wi as mentioned in (13). This completes the
proof.

4. UNKNOWN INPUT ESTIMATION

Several works were realized for the unknown in-
put estimation within the framework of linear
dynamic systems (see for e.g. (Stotsky and Kol-
manovsky, 2001), (Edwards and Spurgeon, 2000)).
For example Edwards et al are proposed two
methods for detecting and reconstructing sen-
sor faults using sliding mode observers (Edwards
and Spurgeon, 2000). In (Liu and Peng, 2002)
a method to simultaneously estimate unknown
states and disturbances of linear time invariant
systems are presented; the state is estimated us-
ing a Luenberger-like observer while the distur-
bance signals are estimated based on an inverse-
dynamics motivated algorithm. In this part, the
proposed method is based on the hypothesis of
the good estimation of the state variables.

We have previously shown that the convergence
of the multiple observer (3) is guaranteed if the
conditions of theorem 1 are satisfied. In steady
state regime, the state estimation error tends
towards zero; by replacing x by x̂ in the equation
(1) we obtain the following approximation:





˙̂x =
M∑

i=1

µi (ξ)
(
Aix̂ + Biu + Ri ˆ̄u

)

ŷ = Cx̂ + F ˆ̄u

(15)

An estimation of unknown input is obtained as
follows:

ˆ̄u = (WT W )−1WT




˙̂x−
M∑

i=1

µi (ξ) (Aix̂ + Biu)

ŷ − Cx̂




(16)
with:

W =




M∑

i=1

µi (ξ) Ri

F


 (17)

W must be of full column rank.

Remark: if the matrix F is of full column rank,
the calculation of the unknown input estimation
can be carried out in a simpler way:

ˆ̄u = (FT F )−1FT (y − ŷ) (18)

5. SIMULATION EXAMPLE: APPLICATION
TO SECURE COMMUNICATION

The approaches developed in sections 3 and 4 can
be applied to synthesize a secure communication
system. The problem we are faced with consists

of transmitting some coded message with a signal
broadcasted by a communication channel. At the
receiver side, the hidden signal is recovered by
a decoding system. In this section, the proposed
multiple observer is used to design a secure com-
munication scheme. For this purpose we consider
chaotic multiple model (1) with two LTI local
models: 




ẋ =
2∑

i=1

µi (y1)
(
Aix + Riū

)

y = Cx + Fū

(19)

with:

x =




x1

x2

x3


 and y =

(
y1

y2

)

where x1 is limited by: x1 ∈
[− 30 30

]
.

A1 =



−10 10 0
28 −1 −30
0 30 −8/3


 A2 =



−10 10 0
28 −1 30
0 −30 −8/3




B1 =




0
0
0


 B2 =




0
0
0


 C =

(
1 0 0
0 1 0

)
F =

(
1
1

)

R1 =




1
1
1


 R2 =




1
0
1




The activation functions are the following form:

µ1 (y1) =
1
2

(
1 +

y1

30

)
and µ2 (y1) =

1
2

(
1− y1

30

)

where the message is modulated into the chaotic
system (Lorenz’s equation) via the previously
designed vectors Ri (Lian et al., 2001); using
vector F , the transmitted signal y is embedded
with the message ū.

The simulation of multiple model without the
unknown input ū and with the initial value x0 =
(1 1 1)T shows the chaotic behavior of the exam-
ple (see figure (1) plotted in the phase plan of the
system).

In the following and in the context of secure
communication, the unknown input represents
the hidden message to be transmitted. Thus the
transmitted signal y is embedded with the hidden
message ū.

The considered multiple observer for this applica-
tion is given by the following equation:





ż =
2∑

i=1

µi (y1)
(
Niz + Liy

)

x̂ = z − Ey

(20)

The resolution of the conditions of theorem 1 with
B1 = B2 = (0, 0, 0)T lead to the following result:
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Figure 1. Phase plan of the chaotic multiple model
(19)

X =

(
1.750 1.650 −0.003

1.650 1.750 −0.003

−0.003 −0.003 0.195

)
E =

( −3.05 3.05

3.99 −3.99

−0.004 0.004

)

N1 =

(
33.66 47.89 −91.72

−36.18 −45.78 89.96
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)
L1 =

( −16.44 17.44

−14.94 15.94

253.9 −252.9

)

N2 =

(
35.06 49.54 91.72

−37.82 −47.14 −89.96

−62.08 31.20 −2.53

)
L2 =

( −19.38 17.32

−13.67 17.67

−252.38 253.37

)
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Figure 2. Estimation errors ei = xi − x̂i, i ∈
{1, 2, 3}
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Figure 3. Hidden message ū and its estimate

Figure (2) represent the state estimation error
with the initial conditions x0 = (1 1 1)T et x̂0 =

(0 0 0)T . Figure (3) displays the hidden transmit-
ted message and its estimate. Excepted around
the time origin, the estimated message perfectly
matches the true one.

6. CONCLUSION

Using multiple model representation, We have
showed how to design a multiple observer for
synchronization of chaotic multiple models with
unknown inputs. Sufficient conditions to design
such observer is given in LMI formulation with ad-
ditional equality constraints easy to compute with
classical numerical tools. Under some assumption,
we have showed that the state and unknown input
estimation are possible. A numerical example rep-
resenting an application to secure communication
is given to illustrate the effectiveness of the de-
rived synthesis conditions. The simulation results
show that the synchronization in chaotic multiple
models and the retrieve of the hidden transmitted
signal are very satisfactory.
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