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Abstract

This paper deals with the design of a sliding mode
multiple observer (an observer based on a multiple
model) allowing to estimate the state vector of a non
linear dynamical system. This latter is influenced by
unknown inputs which act on it through a known
transmission matrix. The state estimation and
consequently the output estimation can therefore be
classically used for detecting and isolating faults.

Keywords: multiple model, multiple observer, sliding
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1 Introduction

The general procedure for using an observer for  fault
detection and isolation consists of three main steps:

1. Estimating the output measurement of the
system by using an adapted structure of the
observer.

2. Comparing the estimated and the measured
outputs, i.e. generating the so-called residuals.

3. Analyzing the residuals and deciding if a fault
occurred or not.

The decision process may be based on a simple threshold
test applied on the instantaneous value or on a moving
average of the residuals. However, when the system
under consideration is subject to unknown disturbances
or unknown inputs, to  properly achieve fault detection
needs the effect of the disturbance to be de-coupled from
the residual signal; that allows to avoid false alarms in
the detection procedure. This problem is known in the
literature as the robust fault detection problem which is
mainly solved by using unknown input observers [7].

The problem of state estimation of linear systems subject
to unknown inputs has received considerable attention [4]
and [11]. However, a very few works have been developed
for nonlinear systems [3] and [12]. The purpose of this
work is to propose a methodology for the design of a
nonlinear observer of this type of systems.

2 Sliding mode multiple observer

The concept of sliding mode emerged from the Soviet
Union in the late sixties where the effects of introducing
discontinuous control action into dynamical systems were
explored. By the use of a judicious switched control law, it

was found that the system states could be forced to reach
and subsequently remain on a pre-defined surface in the
state space. Whilst constrained to this surface, the
resulting reduced-order motion – referred to as the
sliding motion – was shown to be insensitive to any
uncertainty or external disturbance signals which were
implicit in the input of the system.
This inherent robustness property has resulted in world
wide interest and research in the area of sliding mode
control. These ideas have subsequently been employed in
other situations including the problem of state estimation
via an observer.

The earliest work of Utkin is based on a discontinuous
structure for the observer as described in [5]. Walcott and
Zak use a Lyapunov-based approach to formulate and
synthesize an observer which, under appropriate
assumptions, exhibits asymptotic state error decay in the
presence of bounded nonlinearities and uncertainties on
the input of the system [4]. Edwards and Spurgeon
propose an observer strategy, similar in style to that of
Walcott and Zak, which circumvents the use of a symbolic
manipulation and offers an explicit design algorithm.
Within the framework of the multiple model approach,
the synthesis of regulators by using sliding mode was also
considered [10].

The presented work consists in conceiving a sliding mode
multiple observer, capable of reconstructing the state and
the output vectors of a system when some inputs are
unknown, such as each local observer is modeled in the
same way of Walcott’s and Zak’s observer (1988).

2.1 Multiple model representation

Let us consider a nonlinear system represented by the
following multiple model (with r is the number of local
models) with unknown inputs:

�x t t A x t B u t R u t D

y t Cx t

i i i i i

i 1

r

1 6 1 62 7 1 6 1 6 1 62 7

1 6 1 6

= µ + + +

=

%

&
K

'
K =

∑ ξ (1)

such that : 
µ =

≤ µ ≤ ∀ ∈

%

&
K

'
K

=
∑ i
i

r

i

t

t i r

ξ

ξ

1 62 7

1 62 7 ; @

1

0 1 1
1

,...,

where x t Rn1 6 ∈  is the state vector, u t Rm1 6 ∈  is the input
vector, u t Rq1 6 ∈  the vector of unknown inputs and
y t Rp1 6 ∈  the vector of measurable output. For the ith



local model, A Ri
n n∈ ×  is the state matrix, B Ri

n m∈ ×  is
the matrix of input,  R Ri

n∈ ×q  is the distribution matrix
of the unknown inputs and D Ri

n l∈ ×  is a matrix
depending on the operating point. Moreover, C Rp n∈ ×  is
the matrix of output. It is assumed that the matrices Ri

are perfectly known ; on the contrary the time evolution
of u t1 6  is unknown. Finally, ξ t1 6 represents the vector of
decision depending on the input and/or the measurable
state variables: the value of ξ t1 6 allows to specify what
are the active local models at time t.
The procedure that allows to obtain this structure and to
estimate its parameters is not developed here. Let us only
state that one can either uses techniques of parametric
estimation [8] or linearization techniques [9].

2.2 Multiple observer structure

The proposed observer for the multiple model (1), is a
linear combination of local observers, each of them having
the structure proposed by Walcott and /DN�
In this part, we consider that the inputs u t1 6  are
bounded, such as u t1 6 ≤ ρ, where ρ is scalar and ⋅
represents the Euclidean norm.
It is also assumed that there exist matrices G Ri

n p∈ ×

such that A A G Ci i i0 = −  have stable eigenvalues and
that there exist Lyapunov pairs P Qi,1 6 such that the
structural constraints:

A0i
T P PA Qi i+ = −0 (2-a)

C F PRT
i
T

i= ∀ ∈, ,...,i r1; @ (2-b)

are satisfied for some F Ri
q p∈ × .

The proposed observer has the form:
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One can determine the matrices G i  and the control
variables νi t1 6 , with νi

qt R1 6 ∈ , which guarantee the
exponential convergence of �x t1 6  towards x t1 6 .
Let us note that equation (2) allows to isolate the
unknown inputs.
In order to estimate the state vector of the system (1), we
are going to proceed to two successive coordinate changes
of the state vector.

2.3 First change of coordinates

Let us suppose that all the pairs A Ci,1 6  are observable.
As the outputs of the system are to be considered for the
design of the observer, it is logical to effect a coordinates
change so that the outputs directly appear as components
of the new state vector. Without loss of generality, the
output distribution matrix can always be written as:

C C C1 2= (4)

where C R , C R and det C 01
p n p

2
p p

2∈ ∈ ≠× − ×1 6 1 6 . The
following change of coordinates is then operated:
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where 
~
T is a non singular matrix. With respect to this

new coordinate system, the new output distribution
matrix can be written as:
~ ~
C = CT 1− = 0 Ip  (6)

The other system matrices are written as:
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The Lyapunov matrices P Qi,1 6 and the structural
constraints (2) became, in the new coordinates, as follows:

~ ~ ~
P T PT

T
= − −1 14 9 (8-a)

~ ~ ~
Q T Q Ti

T

i= − −1 14 9 (8-b)
~ ~~
C F PRT
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i= (8-c)

According to definitions (7), the system (1) can be
rewritten under the following form:
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where ~
~ ~ ~x Tx tt x t x t

T1 6 1 6 1 6 1 6= = 1 2 (10)

Summarizing, the change of coordinates allows to express
directly the output vector as a part of the state vector.

2.4 Isolating the unknown inputs

Now the result concerning the conception of a robust
observer in the presence of unknown inputs established
by Walcott and Zak may be used. This result is then
extended to the conception of a multiple observer.

Let the local models 
~ ~ ~ ~
A ,B ,R ,i i i C4 9  defined by equation (9)

where 
~
A i  are stable matrices ∀ ∈i r1,...,; @ , and

A B R Ci i i, , ,4 9  be related to 
~ ~ ~ ~
A ,B ,R ,i i i C4 9  by a non-

singular similarity transformation T, where x t Tx t1 6 1 6= ~ .
Then, the system matrices are written in the new base as
follows [4]:
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Proposition 1: let 
~ ~ ~ ~
A ,B ,R ,i i i C4 9  be a local model for

which there exists a pair 
~

,P Fi4 9 defined by constraints (8-

c). Then, there exists a non-singular similarity



transformation T so that the quadruple A B R Ci i i, , ,4 9  in

the new coordinates exhibits the following properties:
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Proof: Let us consider the pairs 
~

,P Fi4 9 associated to the

local model 
~ ~ ~ ~
A ,B ,R ,i i i C4 9  and the Lyapunov matrix 
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Let us define the change of coordinates using the
following transformation:
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which is non-singular since det det
~

T P4 9 4 9= ≠11 0 because
~ ~
P PT

11 11 0= > .

In the new coordinate system, the expression
C CT Ip= =−~ 1 0  is obtained by considering the

equation (6) and (11-a). ♦

From equation (8), one obtains 
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and so property 2 is proved ♦

If there exists a Lyapunov matrix 
~
P  which satisfies

constraints (8), then the matrix P T PT
T

= − −1 14 9
~

 is a

Lyapunov matrix for A i0  and satisfies the structural
constraints C F PRT

i
T

i=  ∀ ∈i r1,...,; @ . Using the

partitioning of 
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P and T , a direct computation leads to:
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where P P P P PT
2 22 12 11

1
12= − −~ ~ ~ ~

 and thus P has the required
block diagonal structure of property 4. ♦
Finally, as the Lyapunov matrix P related to A i0  has
been demonstrated to be block diagonal, the matrices
A and Ai i011 022  are stable. Indeed, from equations (2-a)
and (12), one obtains:
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As A A G C Ai i i i011 11 11 11= − =4 9  and since G Ci4 9
11

0= ,

∀ ∈ ×G Ri
n p  (see property 3), the matrices A i11  are also

stable, so property 1 is proved. �

2.5 Synthesis of a multiple observer

Let us suppose that there exists a pair of Lyapunov
matrices 

~
,
~

P Qi4 9 checking the constraint (8) for each local

model described by 
~ ~ ~ ~
A ,B ,R ,i i i C4 9 . Then, there is a non-

singular transformation T from which the multiple model
with unknown inputs can be written in the following
form:
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or in a developed form:
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Notice that x t11 6  does not depend explicitly upon the
unknown inputs u t1 6 .
According to equation (13), the proposed multiple
observer has the following form:
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where �x t1 6  represents the estimated state vector. As
22  is a

stable matrix and the discontinuous vector functions νi t1 6
are defined as follows:
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2 ∈ ×  is the unique symmetric positive definite

solution of the Lyapunov equation:
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Let us denote state estimation and output errors as
e t x t x t1 1 11 6 1 6 1 6= −�  and e t e ty21 6 1 6= . By direct time
derivative, their dynamic evolutions check:
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Lyapunov equation

In order to show the exponential convergence of this
observer, let us consider the following Lyapunov function:

V e e e P e e P eT T
1 2 1 1 1 2 2 2,1 6 = + (18)

Its derivative in respect to time, evaluated along the
trajectory of the system by using equations (2) and (16),
may be expressed as:
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Proposition 2: there exists a symmetric positive definite
matrix P2 checking (16), such that the dynamical errors
(17) are asymptotically stable.
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1 ∈ − × −1 6 1 6  a symmetric positive definite matrix,
unique solution of the Lyapunov equation (21).
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The derivative (19) can be shown to be:
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Taking into account (22), the expression of �V  becomes:
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By using the equation (20), the derivative of the
Lyapunov function becomes:
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1. Let us suppose that the output error e2  is different
from zero. By using the expression (15) of νi , the
derivative of the function V becomes:
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As the unknown inputs are bounded, then:
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2. Let us suppose now that the output error e2  is zero; the
function �V  is then written as:
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Thus, we have demonstrated that the errors
e t and e t1 21 6 1 6 tighten towards zero in an exponential
way.

In conclusion, the multiple observer of the system (1) can
be written as follows:
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3 Example

The selected nonlinear system is represented on figure 1.
It results from a traditional benchmark [6] and



schematizes a hydraulic process made up of three tanks.
These three tanks T T and T1 2 3, , with identical sections A,
are connected one to each other by cylindrical pipes with
identical sections Sn . The output valve is located at the
output of tank T2  (T2 it ensures to empty the tank filled
by the pump flows 1 and 2 with respectively rates Q t11 6
and Q t21 6 ). Two combinations of the three water levels
are measured. The communication pipes between the
tanks are equipped with manually adjustable ball valves,
which allow the corresponding pump to be closed or open.
The three levels x x and x1 2 3,  are governed by the
constraint x x x1 3 2> >  ; the process model is given by the
equation (24).

Indeed, taking into account the fundamental laws of
conservation of the fluid, one can describe the operating
mode of each tank; one then obtains a nonlinear model
expressed by the following state equations [6]:
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(24)

where α α α1 2 3, and  are constants. Qf t1 6  denotes an
additional mass flow caused by a leak that constitutes the
unknown input and g is the gravity constant.
The multiple model (1), with ξ t u t1 6 1 6= , which
approximates the nonlinear system (24), is described by:

�x t t A x t B u t R t D

y t Cx t

i i i i i

i

u1 6 1 62 7 1 6 1 6 1 62 7

1 6 1 6

= µ + + +

=

%
&
K

'
K =

∑ ξ
1

4

The matrices A B C and Di i i, , ,  are calculated by
linearizing the initial system (24) around different points
chosen in the operating range of the system. Four local
models have been selected in an heuristic way. That
number guarantees a good approximation of the state of
the real system by the multiple model.

Simulation results

The simulation results are represented on the following
figures. The convergence of the state vector of the
multiple observer towards those of the multiple model is
quite good. At the vicinity of t=0, the disparity between
estimated and actual state is due to the choice of initial
conditions.
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Figure 1: Multiple model inputs
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Figure 2: State estimation
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4 Conclusion

In that paper, the design of a sliding mode non linear
observer based on a multiple model has been proposed.
The design of such observer relies on the existence of
some matrices, namely P Q F i ri i, , , ,...,= 1; @ , ensuring,
on one hand, the stability of the observer and, on second
hand, satisfying a structural constraint allowing to
isolate the unknown but bounded inputs in a particular
part of the state vector.

Of course, the existence of such matrices depends on the
number of unknown inputs with regards to the number of
the measurements and the rank of the different
associated matrices ; this point has not precisely been
discussed in this paper because of space lacking. A first
attempt of using this type of observer for fault detection
and isolation has been presented on a well known three
tank system. The quality of the obtained results seems to
be sufficient to allow faults to be detected despite the
presence of unknown inputs. Future works will deal with
magnitude estimation of the unknown inputs.
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