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ABSTRACT
This paper focuses on an original fault detection method,

able to take into account parameter uncertainties described by
bounded variables. Intervals offer an attractive alternative for
uncertain modelling and allow a straightforward generation of
adaptive thresholds. This method is based on the parity space
approach. The original point treated herein concerns the
choice of the parity matrix, according to uncertain matrices of
state representations. After expressing external forms of parity
relations, interval arithmetic is used to evaluate internal forms
and to deduce residual enclosures delimiting normal operation
field. Then, we stress on the problems caused by
dependencies between interval variables.

 1. INTRODUCTION

Fault detection schemes often use the concept of analytical
redundancy. They are based on consistency tests where
sensory observations of a physical system are confronted with
the information embodied in its model. Then residuals are
generated and a normal operation procedure is usually made.
An inconsistency is revealed when at least one residual
becomes non-zero or one estimated parameter abnormally
deviates. Reviews of model-based fault detection and isolation
(F.D.I.) have been published for twenty years: [13], [3], [4]
for state estimation; [5] for parameter identification.

A problem met in the field of F.D.I. schemes lies in the fact
that a model only defines an approximate behaviour of a
physical system. This is caused by modelling errors when a
model is made linear or when some physical phenomena are
not taken into account. However, a modelling error has not to
be identified with a fault. Some methods generate robust
residuals using uncertainties de-coupling techniques. These
are considered as disturbances whose distribution matrices are
well-known. Some investigators have applied the unknown
input observer (U.I.O.) or have built observers with the
assignment of eigenstructure scheme [11]. The major
drawback is that diagnosis is only made on the certain part of
the model, without taking into account the information
embodied in the eliminated uncertainties. In some other
methods, uncertainties receive a stochastic description and are

described as an additive random noise. If statistical
hypotheses about parameters are made (multiplicative
uncertainties), the problem becomes insoluble because of
operations on probability density functions.

This paper focuses on a fault detection method taking into
account the structure and the amplitude of uncertainties. Each
uncertain parameter is described by a bounded variable (or
interval variable). This representation is used in parameter
identification [8] but is not widely-known in diagnosis [1]. A
major drawback of interval arithmetic being its explosive
nature in the case of recursive systems (because of
dependencies between interval variables), a parity space
approach has been chosen. In this way, the dynamic equations
of a model can be formulated in the form of algebraic
relations. Sensory observations are stacked on a finite time
horizon and a static representation is obtained. A procedure
allows to optimise the parity matrix W to obtain a total or
partial de-coupling of residuals from state variables.

Then, the enclosures of residuals are built with the help of
interval arithmetic. These take into account the ranges of
uncertain parameters and define the bounds of the normal
operation field. This approach is comparable with stochastic
methods, where thresholds depend on the no-detection and
false alarm rates as well as the statistic characteristics of the
measured signals. Nevertheless, interval variables are
interesting because they allow to straightforwardly describe
parameter uncertainties in a model and then thresholds are
built more naturally.

Thus, this paper has the following structure. The general
expressions of the static forms are defined in the next section.
In section 3, a procedure allowing to choose the parity matrix
W is presented. Internal forms using this result are given with
respect to the uncertain matrix of the state representation in
section 4. At last, interval arithmetic is presented to evaluate
previous internal forms and build the enclosures of residuals.

 2. STATIC FORMS

 2.a. First static form

Structured uncertain models allow to take into account the
lack of knowledge on a physical system by indicating which
parameters are uncertain. We only consider dynamic systems



given by linear discrete state equations. The structured
uncertainties are described by additive terms, which modify
the matrices A, B, C of the next model:
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where: ( ) { }G G G G A B CG G i iθ θ= + ∈∑0 , , , , .

U(k), X(k) and Y(k) respectively define the state, actuator
input and sensor output vectors at time k. The certain part of
G is described by G0 and the time invariant scalar θG,i is the ith

uncertain parameter associated with the matrix Gi. Its value is
unknown but its bounds are well-known, so, interval
formalism is used to represent this notion [9], [10]. A real
interval is a closed, connected and bounded subset of r. If x
is a real and scalar variable, then the associated interval is
defined by a letter in italics x:

{ } [ ]x = ∈ ≤ ≤ =x x x x x xr / , ,

where x  and x  respectively denote the lower and upper

bounds of x. To boil down to the case all interval variables
have the same bounds -α, α and the same midpoint 0, the next
modification is made:
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where mid and width are the midpoint and the width of x:

( )mid
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2

, ( )width x xx = − .

That is the reason why the case all intervals have the same
bounds -α and α, remains general.

From (1), we can easily express the equality which links up
the state vector X(k+j) (j∈n*) to X(k) and inputs:
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After multiplying (2) by C(θC) and piling measures on an
observation window [k,k+s], the first static form is deduced:
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Generalised parity space methods are based on this static
form (3) obtained for a certain model [2], [6]. Then, external
and internal forms of parity relations are defined and allow to

respectively calculate residuals and their enclosures. Since the
first only contains measured variables, uncertain parameters
and terms which depend on the state vector, are put together
in the second form.

To obtain a parity relation p(k+s), (3) is multiplied by a
suitable row vector ΩT (whose choice will be later specified):
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Remarks. Since the external form is independent of
uncertainties, it is valid whatever the uncertain matrices of the
model. Hs,0  and H s,θ  respectively denote the certain and

uncertain part of ( )Hs A B Cθ θ θ, , . Under ideal circumstances

(no noise and no fault), residuals are non-zero since they
depend on uncertain parameters. Residual terms describe the
coupling between residuals and X(k), which has to be
minimised by the choice of ΩT.

 2.b. Second static form

Instead of expressing X(k+j) according to the initial state
vector X(k) as in (2), it is deduced from X(k+j-1):
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From this relation, state and input vectors are stacked on a
time horizon [k,k+s] which leads to the next equation:
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( ) ( )( )N diag BB s Bθ θ= − , N sn sq∈ ×r , where diags() is a

bloc diagonal matrix and In the n-order identity matrix.

Using the relationship between measures and state
variables:
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and the relation (5), a new static form is finally deduced:
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The expression (6) is general and valid whatever the
uncertain matrices of the model. As the first static form, a
parity relation ( )~p k s+  is obtained by multiplying (6) by a

suited row vector 
~
ΩT :
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Both equalities (7) respectively define external and internal

forms of the second static form. 
~
ΩT  is chosen in order to

minimise the influence of residual terms.

 3. CHOICE OF THE PARITY MATRIX

 3.a. Optimisation procedure

The aim of the method treated herein is the search of a row
vector ΩT orthogonal to Cs. Then, there are two possibilities:
the matrix Cs may be well-known or depend on parameter
uncertainties. If the actuator matrix is uncertain, the classic
generalised parity space method is used to determinate ΩT [2],
[6], [7]. Under present conditions, a total de-coupling with
respect to state variables is made. Nevertheless, if the state or
observation matrices are uncertain, the quantity ΩTcs(θ) has to
be minimised with respect to the vector θ containing uncertain
parameters θi, i∈{1,...,r}. Therefore, the row vector ΩT is
determined by minimising the criterion:
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under the constraint ΩTΩ = 1 (in order to eliminate the trivial
solution). The orthogonality between ΩT and cs(θ) is
measured by this criterion J, which describes the influence of
the state vector X(k) on residuals. It is minimised by taking Ω
equal to the eigenvector associated with the smallest
eigenvalue of S. The value of the criterion J is well-known for

a chosen eigenvalue λ and its eigenvector ω: J T= =λω ω λ .

But, the analytical expression of S must be known to use the
previous criterion. To do it, two cases must be studied
according to the uncertain matrix.

 3.b. Uncertain observation matrix C(θθc)

Let us assume the matrix C(θc) depends on r uncertain
parameters θi, then, it is written as:
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where C0 is the nominal (certain) part of C(θc).

The matrix Cs(θc) defined in (3) is straightforwardly
expressed from the equality (9):
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Since the analytical expression of S is known when the
observation matrix C(θc) is uncertain, ΩT can be determined
by the minimisation of the criterion J.

 3.c. Uncertain state matrix A(θθA)

Some difficulties exist if the previous method is used when
the state matrix A(θA) is uncertain:
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where A0 is the nominal part of the matrix A(θA).

Since the structure of the matrix Cs(θA) (3) is not additive as
(10) and is highly non linear in respect to θA, it is very
difficult to determine the analytical expression of S. That is
why the second static form (6) is used to solve this problem.

The structure of the matrix ( )~
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So, the most orthogonal row vector 
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minimised with respect to the range of θA. 
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minimising the following criterion:
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under the constraint 
~ ~
Ω ΩT = 1 .

Since the analytical expressions of ( )~
Cs Aθ  and 

~
S  have the

same structures as Cs(θc) and S, 
~
S is easily deduced:
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Ω  is logically given by the eigenvector associated with the

smallest eigenvalue of the matrix 
~
S .

 4. INTERNAL FORMS OF PARITY RELATIONS

In this section, internal forms (4) or (7) and the procedure
allowing to calculate the parity matrix are expressed with
respect to the uncertain matrix of the state representation.

 4.a. Uncertain actuator matrix B(θθB)

If the actuator matrix is uncertain:
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where B0 is the nominal part of B(θB), then the matrix Hs(θB)
is defined by the additive expression:

( )H H Hs B s i s i
i

r
θ θ= +

=
∑, ,0

1
 ,

with: H s i
i

s
i i

CB

CA B CB

, =

















−

0 0

0

1

L

L

M O M

L

, i∈{0,1,...,r}.

The parity relation (4) becomes:
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Since the matrix Cs is certain, a total de-coupling with
respect to state variables can be obtained. Generalised parity
space method is applied to determine a vector ΩT orthogonal
to the matrix cs: ΩTcs = 0. Therefore, residual terms are equal
to zero and the previous internal form (13) becomes:
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 4.b. Uncertain observation matrix C(θθC)

From (9), the additive structure of Hs(θC) is deduced:
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Using (4) and the expression of Cs(θC) (10), the following
parity relation is obtained:
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The calculus of ΩT using the criterion J (8) is interesting
because if the chosen eigenvalue is equal to zero, then the
residual is de-coupled from unknown state variables.

The term ΩTCs(θC) is equal to zero for all values of the r
uncertain parameters θi if the following properties hold:
ΩTCS,0 = 0 and ΩTCS,i = 0, i ∈ {1,...,r}, θi ∈ [-α,α]. (14)

If the criterion J is equal to zero (as the associated
eigenvalue), then the following equality holds:

( )Ω Ω ΩT r
s
T s

T
s r
T

S =












=2
3 3

00
1

2

α
α α

C
C C

,
, ,

L . (15)

If (14) is verified, so does (15), and the reverse is always
true. Then, a minimal observation window size always exists
for which the matrix CS(θC) defined in (10) is full row rank,
which allows a total de-coupling. To show that, the
Cayley­Hamilton theorem is applied on the state matrix A.
Thus, it is proved there is at least one non-zero row vector ΩT

which satisfies the following property:
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For an observation window size n, the product on the left
hand size of Cn(θC) by ΩT is equal to zero and so does ΩTS.
These relations hold for an integer greater than n. In
conclusion, several row vectors ΩT orthogonal to CS(θC) are
obtained for an observation window size s greater or equal to
n. The vectors Ω are defined by the eigenvectors associated
with the eigenvalues of S equal to zero. The observation
window size s has to be sufficient to obtain rank(C)
eigenvalues equal to zero or smaller than a fixed tolerance.

 4.c. Uncertain state matrix A(θθA)

Only the second form static is interesting because the
determination of ΩT is otherwise very problematic. From (7),
the expression of the parity relation becomes:
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where the matrix ( )~
Cs Aθ  is defined in (12). Since the matrix

~
Hs  is certain, uncertain terms are thus equal to zero. Like the

previous paragraph, the eigenvectors associated with the

eigenvalues of 
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S  equal to zero allow a total de-coupling.

Nevertheless, this situation is not always possible. Then, the
internal form becomes:
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Since it depends on the state vector expressed on an



observation window [k,k+s], the evaluation of its enclosure is
problematic when the observation matrix C is not full column
rank. Otherwise, the state variables are estimated:
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 5. ENCLOSURES EVALUATION

 5.a. Interval arithmetic

Uncertain parameters are defined by bounded variables
intervening in the previous internal forms. To evaluate their
bounds at any time, interval formalism is used [9], [10], [12].
This procedure determines enclosures which represent the
normal operation field. A fault is detected if a residual
calculated from its external form, goes out its enclosure.

The arithmetic operations (+, –, ×, /) on real variables can
be reformulated in the case of independent interval variables.

Operation Interval obtained
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Table 1. Interval arithmetic operations

An elementary function g is a real function, continuous on
every closed interval on which it is defined (absolute value,
square, square root, exponential, logarithm, sine, cosine, arc
tangent,...). Then, it can be reformulated in the case of interval

variables: ( ) ( ){ }g x x= ∈g x x/ .

An interval extension f of a real function f is an interval
function with the following property: f(x) = f(x), x ∈ x. If this
extension is inclusion monotonic [9], it satisfies:
if x ⊂ y then f(x) ⊂ f(y).

For any given real function f, there are infinitely many
extensions. One of them, called united extension, satisfies:

( ) ( )~
f x

x
=

∈
U

x
f x

The global extrema of an elementary function g are often
known on a range x, then the bounds of the interval function

( )g x  (and the united extension of g), are defined by:

( ) ( ) ( )g x
x x

=
∈ ∈




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


inf

x
g x

x
g x, sup .

But, for more complicated functions, this would require
solving two global optimisation problems, which often
exceeds time consuming. Then, if f results from the
composition of real operators or elementary functions, it is
impossible to compute the united extension. So, natural

extensions f are used. They are obtained by replacing, in the
expression of f, its real argument x by x, and the elementary
functions or operators by the associated united extensions. An
inclusion monotonic and natural extension always includes the
united extension but they are different in general.

 5.b. Dependence between interval variables

In the case of dependence, where some interval variables
occur repeatedly in an expression, interval arithmetic leads to
an overestimation of the minimal range associated with an
united extension. To show that, the following interval
extension is considered: f(x) = x − x. From definition, the

united extension is given by: ( ) { }~
/ xf x = − ∈x x x . So, for

every value of the real variable x, this expression is equal to
{0}. Nevertheless, when the formula giving the subtraction is

used, ( ) [ ]f x = − −x x x x,  is deduced. If x is not reduced to a

real number, f leads to an overestimation which depends on
the width of x. In fact, the dependence is not taken into
account, because the following operation is made: x - z, where
z is an independent interval variable with the same bounds as
x. This problem leads to the subdistributivity property:
x(y ± z) ⊆ xy ± xz or (z ± y) x ⊆ zx ± yx.

So, the natural extensions of two equivalent functions in the
arithmetic of real numbers are not necessary equivalent in the
interval arithmetic. Nevertheless, if each interval variable
appears at most once in the expression of an natural extension,
then its evaluation by interval arithmetic leads to the united
extension. Otherwise, for determining it without searching the
extrema of the real function by non linear computing
(Newton-Raphson, simplex,...), some recursive algorithms
based on Mean Value or Centered Forms as the Monoticity
Test Form can be used [9], [10].

 6. EXAMPLE

Let us consider the following system where the state matrix
depends on an uncertain parameter θ1∈[-0.5,0.5]:
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The study of C1(θ1) (θ1 is time invariant):
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shows this matrix is always of rank 2 for every possible value
of θ1. So, the observation window size is chosen equal to 1.

Since ( )~
C1 1θ  is uncertain, the matrix 

~
S is built. It is not full

rank and one of its eigenvalues is equal to zero. The others are
equal to: 2.30.10-4, 1, 1, 2.02 and 3.67.

In case the chosen eigenvalue is equal to zero, the enclosure
of the residual is reduced to 0. In the other cases, interval
arithmetic is used to evaluate the internal form, which is very
simple in that example:



( )~ ,p k a bk kθ θ1 1= + ,

where the parameters ak and bk depend on measures. Since
there is no dependency between interval variables in a same
residual, its bounds are easily deduced:

( ) [ ]~ , . , .p k a b a bk k k kθ1 05 0 5∈ − + .

The model is simulated during one second. The input is
piece wise constant with a magnitude comprised between -1
and 1. Its value changes every 0.2s. The measures y1 and y2

obtained when θ1 is a constant and is successively equal to
-0.5 and 0.5 are represented below.
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Figure 1. Input and sensory observations

The residual and its enclosure obtained for λ = 2.30.10-4 are
presented below. Both situations where θ1 is equal to -α or α
are examined. At time t = 0.5s, a bias equal to 0.625 occurs on
the first sensor. It represents 10 per cent of the maximal
magnitude of the measure y1 obtained for an input equal to 1.
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Figure 2. Bias on the first sensor

During a normal operation, the residual stays inside its
enclosure (t < 5s). But, when the fault is present, the detection
depends on the operating point and the value of the uncertain
parameter.

 7. CONCLUSION

This paper deals with a fault detection method suited to
structured uncertain models. According to the uncertain
matrix of the state representation, different techniques are
proposed to choose the parity matrix. In the case of an
uncertain observation matrix, the choice of eigenvalues equal
to zero during the minimisation of the criterion J allows to

solve the problem of state estimation. Otherwise, the second
static form allows to treat the case of an uncertain state
matrix. Once the external forms of parity relations were
expressed, the internal forms are evaluated by means of
interval arithmetic. Then the enclosures, which define the
normal operation field, are obtained. If a residual leaves its
enclosure, a fault is detected.

 8. REFERENCES

[1]: Chang I.C., Yu C.C., Liou C.T., “Model-Based Approach
for Fault Diagnosis. 2. Extension to Interval Systems“,
Ind. Eng. Chem. Res., No 34, pp 828-844, (1995).

[2]: Chow E.Y., Willsky A.S., “Analytical Redundancy and
the Design of Robust Failure Detection System“, IEEE
Trans. Aut. Control, Vol. AC-29, No 7, pp 603-614,
(1984).

[3]: Frank P.M., “Fault Diagnosis in Dynamical Systems
Using Analytical and Knowledge based Redundancy - a
Survey and Some New Results“, Automatica, Vol. 26,
No 3, pp 459-474, (1990).

[4]: Gertler J., “Analytical redundancy methods in fault
detection and isolation“, IFAC SAFEPROCESS’91,
pp 9-22, (1991).

[5]: Isermann R., “Process fault detection based on modeling
and estimation methods - a survey”, Automatica, Vol. 20,
pp 387-404, (1984).

[6]: Lou X-C., Willsky A.S., Verghese G.C., “Optimally
Robust Redundancy Relations for Failure Detection in
Uncertain Systems“, Automatica, Vol. 22, No 3,
pp 333-344, (1986).

[7]: Massoumnia M.A., Vander Velde W.E., “Generating
Parity Relations for Detecting and Identifying Control
System Component Failures“, J. Guidance, Control and
Dyn, Vol. 11, No 1, pp 60-65, (1988).

[8]: Milanese M., Norton J., Piet-Lahanier H., Walter E.,
“Bounding approches to system identification“, Plenum
Press, New York and London, (1996)

[9]: Moore R.E, “Methods and Applications of Interval
Analysis“, Studies in Applied Mathematics, (1979).

[10]: Neumaier A., “Interval Methods for Systems of
Equations“, Encyclopaedia of Mathematics and its
Applications, Cambridge, (1990).

[11]: Patton R.J., Frank P.M. & Clark R.N., “Fault Diagnosis
in Dynamic Systems“, Prentice Hall, Englewood Cliffs,
International Series in Systems and Control Engineering,
(1989).

[12]: Ragot J., Boukhris A., Mandel D., “A propos de
l’algèbre des intervalles, Application à la validation de
données“, Rencontres Francophones sur la Logique
Floue, Cépaduès Editions, LFA’97, pp 341-348, (1997).

[13]: Willsky A.S., “A survey of design methods for failure
detection in dynamic systems“, Automatica, Vol. 12,
pp 601-611, (1976).


