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Introduction
The problem of obtaining reliable estimates of the state of a

process is a fundamental objective in process supervision,
given that these estimates are used to understand the process
behavior. Measurements are collected to know, at each time,
the behavior of the process and provide a way to verify whether
its functioning has been defined and given by the user. For that
purpose, broadly ranging techniques have been developed to
perform what is currently known as data reconciliation (for
which several book reviews have been written1-4: the underly-
ing idea is to verify whether the measurements fulfill the model
of the process and, if this is not the case, to analyze what are
the noises affecting the measurements and finally to correct the
measurements). Unfortunately, the measurements may be un-
knowingly corrupted by gross errors, the effects of which are
added to those of the noise. As a result, the data reconciliation
procedure can give rise to absurd results and the estimated
variables are corrupted by this bias. Several schemes have been
suggested to cope with the corruption of normal assumption of
the errors,1,5,6 by detecting a priori or a posteriori gross errors.

Methods to include bounds in process variables to improve
gross error detection have been developed. 7 However, if
bounds are not properly chosen, one major disadvantage of
these methods is that they give rise to situations such that it
may impossible to estimate all the variable using only a subset
of the remaining free gross error measurements. There is also
an important class of robust estimators whose influence func-
tion is bounded, thus allowing rejection of outliers.8,9 Another
approach is to take into account the nonideality of the mea-
surement error distribution using an objective function con-
structed on contaminated error distribution.8,10 This approach

has been developed for data reconciliation11,12 and has been
tested on several applications.6,13-15

In this paper, we restrict our analysis to processes described
by linear and bilinear mass balance equations. However, de-
spite this limitation, these models are in current use because
they describe total mass and partial mass balances. In the
following, we adopt and develop the use of contaminated data
distribution for the data reconciliation problem. Section 2 pro-
vides a brief background of the data reconciliation problem
and, in Section 3, the proposed robust data reconciliation
method is developed. It is thereafter illustrated through an
academic example in Section 4.

Data Reconciliation Background: The Linear
Case

The classical general data reconciliation problem2,16-18 deals
with a weighted least-square minimization of the measurement
adjustments subject to the model constraints. Indeed, for the
sake of simplicity, the process model equations are taken as
linear:

Ax ! 0 A ! !nv x ! !v (1)

where x is the state of the process and A is its so-called
incidence matrix. Measurement gives the partial information x̃
! !p:

x̃ ! Hx " # x̃ ! !p (2a)

# ! N!0, V" H ! !pv (2b)

where the matrix H defines which variables are measured and
where # ! !p is a vector of random errors, characterized by a
variance matrix V and a normal probability density function
(pdf):
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px !
1

!2$"v/ 2"det!V"
exp#$

1
2

$Hx % x̃$V$1
2 % (3)

The likelihood estimation is obtained by optimizing the
Lagrange function:

! !
1

!2$"v/ 2"det!V"
exp#$

1
2

$Hx % x̃$V$1
2 % " &TAx (4)

Assuming the system observability [rank(AT HT) # n], the
well-known solution of this problem is19

x̂ ! %G % GAT! AGAT"$1AG&HTV$1x̃ (5a)

G ! !HTV$1H " ATA"$1 (5b)

Extensions for dynamic systems were also established (see,
for example, Singhal and Seborg12 and Soderstrom et al.14). In
fact, the estimations obtained by this method are not always
exploitable, the main drawback of which is the contamination
of all estimated values by the outliers. For that reason robust
estimators could be preferred, where robustness is the ability to
ignore the contribution of extreme data such as gross errors.
Robust statistics8-10,20 treat the consequences of possible devi-
ation from the statistical model, providing methods for protect-
ing data reconciliation procedures against such deviations. In
this field, one of the pioneer works11 uses a method based on a
contaminated Gaussian objective function instead of the clas-
sical least-square objective function.

Robust Data Validation: The Bilinear Case
We consider now the case of a process characterized by two

types of variables: macroscopic variables (such as flow rates x)
and microscopic variables (such as concentrations or particle
sizes y). Thus, the process model (Eq. 1) is extended to

Ax ! 0 A ! !nv x ! !v (6a)

A! x " y" ! 0 y ! !v (6b)

The operator R is used to perform the element by element
product of two vectors and thus describes compactly bilinear
equations. In this section, all the process variables are assumed
to be measured; so x̃ ! !v and x̃ ! !v.

If the measurements contain random outliers, then a single
pdf described as in Eq. 3 cannot account for the high variance
of the outliers. To overcome this problem let us assume that
measurement noise is sampled from two pdfs, the normal one
having a small variance representing regular noise and the
abnormal one having a large variance representing outliers. To
simplify the presentation, each measurement x̃i (ỹi) is assumed
to have the same normal 'x,1 ('y,1) and abnormal 'x,2 ('y,2)
standard deviations. This hypothesis will be withdrawn later.
Thus, for each observation x̃i and ỹi, we define the following
pdf:

p! x̃i&xi, 'x, j" !
1

"2$'x, j

exp'$
1
2 #xi % x̃i

'x, j
%2(

j ! 1, 2, i ! 1 . . . v (7a)

p! ỹi&yi, 'y, j" !
1

"2$'y, j

exp'$
1
2 #yi % ỹi

'y, j
%2(

j ! 1, 2, i ! 1 . . . v (7b)

In the following, we adopt the shortening notation px,j,i and
py,j,i, respectively, for p(x̃i & xi, 'x,j) and p(ỹi & yi, 'y,j) where
indices i and j are, respectively, used to indicate the number of
data and the number of the distribution. Then, the combination
of these two pdfs (for each type of variable) is performed with
the help of a weight w. Quantity (1 $ w) can be seen as an a
priori probability of the occurrence of outliers:

px,i ! wpx,1,i " !1 % w" px,2,i i ! 1 . . . v (8a)

py,i ! wpy,1,i " !1 % w" py,2,i i ! 1 . . . v (8b)

Assuming independence of the measurements allows the global
log-likelihood function to be defined as

' ! log )
i#1

v

px,ipy,i (9)

Let us now define the optimization problem consisting in
estimating the process variables x and y. For that, consider the
following Lagrange function:

! ! ' " &TAx " (TA! x " y" (10)

Mass balance constraints for total flow rate (Eq. 6a) and
partial flow rate (Eq. 6b) are taken into account through the
introduction of the parameters & and (. The stationarity con-
ditions of !, with respect to x, y, &, and (, are expressed by
direct derivative (the estimations are now noted x̂ and ŷ):

Wx̂
$1! x̂ % x̃" " AT& " ! A " ŷ"T( ! 0 (11a)

Wŷ
$1! ŷ % ỹ" " ! A " x̂"T( ! 0 (11b)

Ax̂ ! 0 (11c)

A! x̂ " ŷ" ! 0 (11d)

The weighting matrices Wx̂ and Wŷ are defined by

Wx̂
$1 ! diag

i#1. . .v

*wpx̂,1,i

'x,1
2 "

!1 % w" p̂x̂,2,i

'x,2
2

wpx̂,1,i " !1 % w"px̂,2,i
+ (12a)
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Wŷ
$1 ! diag

i#1. . .v

*wpŷ,1,i

'y,1
2 "

!1 % w"pŷ,2,i

'y,2
2

wpŷ,1,i " !1 % w"pŷ,2,i
+ (12b)

where the notations diagi#1. . .v(ai) or diag(a) stand for the
operator that converts a v-dimensional vector a, whose entries
are ai, into a diagonal matrix. Notice that if each measurement
x̃i (ỹi) has a particular standard deviation, Eqs. 12a and 12b still
hold by replacing the parameters 'x,1 and 'x,2 ('y,1 and 'y,2) by
'x,1,i and 'x,2,i ('y,1,i and 'y,2,i). Using shortening notations Ax̂

# A diag(x̂) and Aŷ # A diag(ŷ), the system of Eqs. 11a–11d
may be reformulated as an implicit system with respect to the
unknown x̂ and ŷ:

x̂ ! %I % Wx̂ AT! AWx̂ AT"$1A&% x̃ % Wx̂ Aŷ
T! Ax̂Wŷ Ax̂

T"$1Ax̂ỹ&

(13a)

ŷ ! %I % Wŷ Ax̂
T! Ax̂Wŷ Ax̂

T"$1Ax̂& ỹ (13b)

Equations 13a and 13b are clearly nonlinear with respect to
the unknown x̂ and ŷ, the weight matrices Wx̂ and Wŷ, depend-
ing on the Eq. 8 pdf, which themselves depend on the x̂ and ŷ
estimations. In fact, the solution of the implicit system of Eqs.
13a and 13b can be numerically obtained with standard solvers;
for more efficiency, we suggest the following iterative scheme,
which is well adapted to the specific bilinear structure of the
equations.

Initialization Step. k # 0, x̂(k) # x̃, ŷ(k) # ỹ. Based on an
a priori knowledge about the occurrence of gross errors, choose
w. Adjust 'x,1 and 'y,1 from an a priori knowledge about the
noise distribution, or take them proportional to the measure-
ments. Adjust 'x,2 and 'y,2 from an a priori knowledge about
the gross error distribution or take them proportional to the
measurements and greater that 'x,1 and 'y,1.

Estimation Step. Compute the quantities

px̂, j,i
!k" !

1

"2$'x, j

exp,$
1
2 'x̂i

!k" % x̃i

'x, j
(2- j ! 1, 2, i ! 1. . .v

(14a)

pŷ, j,i
!k" !

1

"2$'y, j

exp,$
1
2 'ŷi

!k" % ỹi

'y, j
(2- j ! 1, 2, i ! 1. . .v

(14b)

Wx̂
$1 ! diag

i#1. . .v

*wpx̂,1,i
!k"

'x,1
2 "

!1 % w"px̂,2,i
!k"

'x,2
2

wpx̂,1,i
!k" " !1 % w"px̂,2,i

!k" +
Wŷ

$1 ! diag
i#1. . .v

*wpŷ,1,i
!k"

'y,1
2 "

!1 % w"pŷ,2,i
!k"

'y,2
2

wpŷ,1,i
!k" " !1 % w"pŷ,2,i

!k" + (14c)

Ax̂
!k" ! A diag% x̂!k"& Aŷ

!k" ! A diag% ŷ!k"& (14d)

Update the estimations

x̂!k(1" ! )I % Wx̂
!k"AT%AWx̂

!k"AT&$1A*

) ) x̃ % Wx̂
!k"Aŷ

!k"T%Ax̂
!k"Wŷ

!k"Ax̂
!k"T&$1Ax̂

!k"ỹ*(15a)

ŷ!k(1" ! )I % Wŷ
!k"Ax̂

!k"T%Ax̂
!k"Wŷ

!k"Ax̂
!k"T&$1Ax̂

!k"* ỹ (15b)

Convergence Test Step. Compute an appropriate norm of
the corrective terms: *x

(k(1) # $ x̂(k(1) $ x̃ $ and *y
(k(1) $ ŷ(k(1)

$ ỹ $ If the variations *x
(k(1) $ *x

(k(1) and *y
(k(1) $ *y

(k(1) are
less than a given threshold then stop, else k # k ( 1 and go to
step 2.

Extensions
Partial measurements

Let us consider the more realistic situation where only some
variables are measured. For that purpose, two selection matri-
ces Hx and Hy are introduced, thus allowing us to define which
variables are measured:

x̃ ! Hxx " #x (16a)

ỹ ! Hyy " #y (16b)

Then, the Eq. 7a pdf for variable x is modified as follows:

px, j !
1

!2$"v/ 2"det!Vx, j"
exp'$

1
2

!Hxx % x̃"TVx, j
$1!Hxx % x̃"(

j ! 1, 2 (17)

where Vx,j is the diagonal matrix containing the variances 'x, j
2 .

A similar expression for py,j may be written that allows the
global log-likelihood function to be expressed:

' ! log%wpx,1 " !1 % w"px,2&%wpy,1 " !1 % w"py,2& (18)

Following the same step as previously, the Lagrange function
associated with the minimization of Eq. 18, subjected to the
constraints of Eq. 6, can be explained by Eq. 10. Then, by
direct derivative of this Lagrange function, the optimality equa-
tions may be expressed as

Hx
TWx̂

$1!Hxx̂ % x̃" " AT& " ! A " ŷ"T( ! 0 (19a)

Hy
TWŷ

$1!Hyŷ % ỹ" " ! A " x̂"T( ! 0 (19b)

Ax̂ ! 0 (19c)

A! x̂ " ŷ" ! 0 (19d)

In these last expressions, the weight matrices Wx̂ and Wŷ were
already defined in Eqs. 12a and 12b. As in the first section,
observability for x and y is needed4; in that case, Eqs. 19a–19d
can be transformed into the following implicit system:
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x̂ ! %Gx % Gx̂ AT! AGx̂ AT"$1AGx̂&

) %Hx
TWx̂

$1x̃ % Aŷ
T! Ax̂Gŷ Ax̂

T"$1Ax̂GŷHy
TWx̂

$1ỹ& (20a)

ŷ ! %Gy % Gŷ Ax̂
T! Ax̂Gŷ Ax̂

T"$1Ax̂Gŷ&Hy
TWŷ

$1ỹ (20b)

Gx ! !Hx
TWx̂

$1Hx " ATA"$1 (20c)

Gy ! !Hy
TWŷ

$1Hy " Ax̂
TAx̂"

$1 (20d)

Comparing the structures of Eq. 20 and Eq. 13 allows us to
use the iterative scheme of the third section. Thus, the same
estimation scheme for x̂ and ŷ may be applied when either all
or a part of the variables are measured.

Bounded data reconciliation
The previous approach to data reconciliation ensures that the

estimates of process variables satisfy the total mass (linear
constraint) and partial mass balances (bilinear constraint).
However, additional constraints, such as nonnegativity restric-
tions on the flow rates or known upper and lower bounds on the
process variables, are not taken into account.7 In this section we
propose a procedure for incorporating bounds on process vari-
ables in the data reconciliation problem itself. These con-
straints may be either natural, that is, resulting from physical
definitions of variables (a flow rate is positive, a volumic
concentration is positive and less that a maximum value) or
resulting from empirical knowledge (the operator knows that
such flow rate must be greater than a given threshold). The
proposed procedure is developed in the context of linear con-
straints only and when all the process variables are measured.
Its generalization to more complex cases (bilinear constraints
and/or partial measurements) is straightforward. In the follow-
ing, the variable x is constrained to belong to an interval:

x! + x + x" (21)

An elegant way to take into account such a constraint con-
sists in using a Bayesian estimator. Let us recall the Bayes rule
expressing the posterior probability density function (that is,
the conditional density of x given its measurement x̃):

p! z&x̃" !
p! x̃&x" p! x"

p! x̃"
(22)

In this last expression, p(x̃ & x) denotes the conditional pdf of
the observation given the true value of x, and p(x) is the prior
external pdf of x that can be incorporated into the estimation
problem. Given that the denominator of Eq. 22 is a constant,
the posterior density reduces to p(x & x̃) + p(x̃ & x)p(x). To facil-
itate the estimate computation, continuous pdf values were
used both for the likelihood function (as in the previous sec-
tion) and the prior pdf, which was modeled by

p! x" !
1
2 ' tanh#x % x!

r % % tanh#x % x"
r %( (23)

and where the smaller r is chosen, the better the approximation
of Eq. 21 is obtained. Thus, in our case, the prior log-pdf of x
is expressed as

log p! x̃&x" ! log' w

"det!Vx,1"
exp#$

1
2

$x % x̃$Vx,1
$1

2 %
"

1 % w

"det!Vx,2"
exp#$

1
2

$x % x̃$Vx,2
$1

2 %( " log'tanh#x % x!
r %

% tanh#x % x"
r %( % log 2 % log%!2$"v/ 2& (24)

The associated Lagrange function becomes

! ! log p! x̃&x" " &TAz (25)

The derivative of ! with respect to x gives

,p! x̃&x"

, x
! Wx

$1% x % ! x̃ " Wxhx"& " AT& (26)

with

Wx
$1 !

wpx,1Vx,1
$1 " !1 % w" px,2Vx,2

$1

wpx,1 " !1 % w" px,2
(27a)

hx !
1
r ' tanh#x % x!

r % " tanh#x % x"
r %( (27b)

A consideration of Eq. 26 clearly shows that the bounds are
taken into account with respect to the quantity hx. Thus, results
of section 3 can be applied when substituting Wx by its new
definition (Eq. 27a) and x̃ by x̃ ( Wxhx. The two proposed
extensions concerning partial measurements and bounded es-
timations extend the use of the reconciliation procedure. More-
over, it is possible to use them simultaneously.

Example and Discussion
The method described in the previous sections has been

successfully applied to the flowsheet given in Smith and
Lewis21 and to simulated processes. Here, we present the
results obtained from the system described by equations as-
sembled in Table 1; the given equations model a plant with 9
units and 15 streams, each stream being characterized by a total

Table 1. Process Equations

Node Equations

1 x1 $ x2 $ x4 # 0 x1y1 $ x2y2 $ x4y4 # 0
2 x2 $ x3 $ x11 # 0 x2y2 $ x3y3 $ x11y11 # 0
3 x3 $ x4 $ x5 # 0 x3y3 $ x4y4 $ x5y5 # 0
4 x5 $ x6 $ x10 # 0 x5y5 $ x6y6 $ x10y10 # 0
5 x6 $ x7 $ x8 # 0 x6y6 $ x7y7 $ x8y8 # 0
6 x7 $ x9 $ x10 # 0 x7y7 $ x9y9 $ x10y10 # 0

7
x11 $ x12 $ x13

$ x16 # 0
x11y11 $ x12y12 $ x13y13

$ x16y16 # 0
8 x12 $ x13 $ x14 # 0 x12y12 $ x13y13 $ x14y14 # 0
9 x14 $ x15 $ x16 # 0 x14y14 $ x15y15 $ x16y16 # 0
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flow rate denoted x and a concentration in a particular chemical
or mineral species denoted by y. Random errors were added to
the 16 variables, whereas some gross errors corrupt some of
them. The simulation results were obtained using the following
parameter values: w # 0.9, r # 0.0025, 'x,1

2 # 100x, 'x,2
2 #

0.1x, 'y,1
2 # 10$5y, and 'y,2 # 10$8y (the variance of the pdf

was chosen proportional to the measurements with a factor of
1000 to express the contamination).

Comparison of the proposed robust least-square (RLS) al-
gorithm with the classical least-square (LS) algorithm is now
provided for the studied example. The x data were corrupted
with gross errors on components 3, 7, and 16 with respective
magnitudes 10, 8, and 5, whereas the components 1, 9, and 12
of the y data were affected by gross errors of same magnitude
equal to 3. In the following, the detection threshold for gross

errors have been fixed, respectively, to 4 and 2 for x and y data
(see the corresponding dashed lines in Figure 1).

In a first test run, observation of variable x5 and y2 are
missing and bounds on variables are defined (for convenience,
only the lower bound x on x is given in Table 2). With the
chosen values, only the flow rate estimation of the ninth stream
was bounded. Without ambiguity, all the gross errors were
detected and isolated with RLS, which is not the case with LS.
Indeed, in Table 2, the true data are given in columns 3 and 7
and their respective measurements in columns 4 and 8. Col-
umns 5 and 6 for the x variable (columns 9 and 10 for the y
variable, respectively) show the estimations obtained with RLS
and LS methods. In this table, bold characters indicate the true
values, the RLS and the LS estimations for the variables
contaminated by gross errors. Analyzing the corrective terms

Figure 1. Corrective terms for RLS and LS.
Dashed lines correspond to detection thresholds.

Table 2. Measurements and Estimations*

Variable Bound x! True Data x Meas. x̃ RLS Est. x̂ LS Est. x̂ True Data y Meas. ỹ RLS Est. ŷ LS Est. ŷ

1 50 57.72 57.74 58.35 59.47 6.23 8.96 6.36 7.08
2 50 67.71 67.05 66.61 68.29 7.04 7.67
3 50 52.98 63.91 53.74 57.07 6.37 6.60 6.52 7.26
4 5 7.99 7.94 8.25 8.82 11.65 11.84 11.86 11.56
5 10 45.49 48.25 5.43 5.45 5.55 6.45
6 50 55.71 55.89 55.97 59.36 6.40 6.26 6.43 7.03
7 30 32.13 39.49 32.49 35.50 7.24 7.10 7.19 8.32
8 20 23.58 23.44 23.48 23.86 5.26 5.42 5.37 5.10
9 22 21.40 21.35 22.00 24.39 5.62 8.78 5.74 7.78

10 5 10.73 10.45 10.48 11.11 10.47 10.31 10.23 9.52
11 5 12.73 13.03 12.86 11.22 9.07 9.25 9.22 9.75
12 5 17.05 16.56 16.76 18.59 8.80 11.85 8.69 10.01
13 1 2.42 2.38 2.32 2.65 22.02 22.81 21.79 21.16
14 5 19.47 18.90 19.08 21.24 10.45 10.23 10.29 11.40
15 5 12.73 13.07 12.86 11.22 9.07 9.13 9.22 9.75
16 0 6.74 11.63 6.22 10.02 13.05 12.46 12.48 13.24

For the y variable, values are multiplied by 100.
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for RLS estimator clearly allows us to suspect variables 3, 7,
and 16 for being contaminated by a gross error. Such conclu-
sions are more difficult to express with the LS estimator.
Moreover, it is instructive to examine the corrective terms
affecting the variables, for both those free of gross error and
those affected by gross errors. It is clear that the LS approach
leads to scattering the corrective terms on all the variables and
not only on those corrupted by gross errors. On the contrary,
the RLS approach mainly affects the corrective terms on the
data that have been subjected to gross errors.

The second test is designed to evaluate the performance of
the proposed approach by conducting a Monte Carlo experi-
ment with 500 simulations. Figure 1 more clearly shows the
estimation errors for both the LS and the RLS methods (on
each graph, horizontal and vertical axes are scaled, respec-
tively, with the number of the data and the magnitude of the
absolute estimation error). For each simulation, the same set of
gross errors as previously defined is used, but the generation of
random noise is renewed for each simulation. Thus, for the
whole simulation set, we have generated 8000 data for the x
variable (among them 1500 gross errors) and the same number
for the y variable (among them 1500 gross errors). Detection of
gross errors is performed by comparing the corrective terms x̂
$ x̃ and ŷ $ ỹ with a given threshold (4 and 2 for x and y,
respectively). Table 3 presents, for each variable, the number
of gross errors that have been detected (the results are ex-
pressed as a percentage of the total number of runs). The first
row indicates the number of the variable (x or y), rows 2 and 3
show the results obtained with our approach, whereas rows 4
and 5 relate the results given by the standard LS approach. The
percentages in bold concern the measurements that have been
corrupted by gross errors; for example, gross errors on x have
been detected on variables 3, 7, and 16 with successful per-
centages of 99.4, 86.2, and 95.8. These results have to be
compared advantageously with 99.2, 76.0, and 0, the last score
indicating that gross error on variable 16 has never been
detected with the LS approach. For the other variables, the
reader should appreciate the level of false detection. An anal-
ogous conclusion may be drawn with the y variable.

To complete this analysis, let us observe the magnitudes of
the corrective terms: with the RLS approach, the corrections
for x variable of streams 3, 7, and 16 are approximately 9.47,
8.25, and 4.40, which can be satisfactorily compared with the
three gross error magnitudes 10, 8, and 5. For the y variable,
corrections are 2.92, 2.80, and 2.83 characterized by gross error
magnitudes of 3, 3, and 3. Of course, detection of gross errors
depends on the chosen detection threshold. Here, a fixed cutoff
has been selected and the given detection statistics depend on
that cutoff. In fact, when analyzing Figure 1, there are a
number of thresholds giving the same results. This situation is
actually attributed to the improvement of contrast between the

magnitudes of the corrections made to the faulty measurements
and the others.

Conclusion
To deal with the issues of gross error influence on data

estimation, this paper has presented a robust approach for data
reconciliation using a cost function that is less sensitive to the
outlying observations than that of least squares. Although we
consider only the class of static linear and bilinear systems, the
proposed approach covers many applications in the field of
chemical and mineralogical engineering. As a perspective of
development of robust reconciliation strategies, there is a need
for taking into account the model uncertainties and optimizing
the balancing parameter w that define the compromise between
noise and gross error distribution. Moreover, there is some
potential for adapting the strategy to dynamical linear systems.
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