
LATEX TikZposter

Exact Algorithms for Scheduling Programs with Shared Tasks

Doctorant:Théo Nazé, Encadrants:Imed Kacem, Giorgio Lucarelli, Camel Tanougast
Laboratoire LCOMS, Université de Lorraine

{theo.naze,imed.kacem,giorgio.lucarelli,camel.tanougast}@univ-lorraine.fr

Exact Algorithms for Scheduling Programs with Shared Tasks

Doctorant:Théo Nazé, Encadrants:Imed Kacem, Giorgio Lucarelli, Camel Tanougast
Laboratoire LCOMS, Université de Lorraine

{theo.naze,imed.kacem,giorgio.lucarelli,camel.tanougast}@univ-lorraine.fr

Problem Presentation

P1

P2

P3

P4

T2

T1

T3

T4

T5

T6

T7

•We consider n programs, k tasks (the Ti),

and c shared tasks.

•Each task has a processing time.

•A program is successfully performed if all of its

tasks are processed by one machine.

• If two programs sharing a non-empty subset of

tasks are scheduled on the same machine, these

shared tasks have to be performed only once.

Applications

•Problem known in the literature under the names of VM Packing and Pagination

•Correspond to the problem of stocking virtual machines on physical server (the virtual
machines are the programs , the memory pages are the tasks, and the physical server are
the machine of our scheduling problem).

•The objectives previously studied are the maximization of the number of hosted virtual
machines given a fixed number of physical servers, and the minimization of the number
of physical servers used given a fixed number of virtual machines.

•Applications in parallel computing.

Objective and Methods

Our objective is to schedule the program present in our input data on two parallel homoge-
neous machines, in order to minimize the makespan, that is to say the completion time of
the last performed task. This is an NP-Hard problem (cf Partition). This objective has
not been previously studied in this context. We present exact algorithms using branching
techniques.

Trivial Algorithms

•A first basic exact algorithm branches on programs, and runs in O∗(2n) steps, as each
program should be scheduled on one of the two machines.

•The best exact algorithm for the Knapsack problem, runs inO∗(2N
2 ) steps. We adapted

this algorithm to be run on partial schedules of our problem.

•By branching on the shared tasks, a trivial algorithm solved Pagination in O∗(3c2n
2).

We enumerate the ways to assign the shared tasks to the machines, and apply the modified
knapsack algorithm to complete the schedules.

Algorithm branching

on links

T1

T2

T3

T4
T5

T6
T7

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

M1

M2

P1 P4 P2

P3

Here, the program P1 is scheduled with
the program P4, the program P3 is not
scheduled with the program P1, and the
program P2 is not scheduled with the pro-
gram P3. By performing this branch-
ing on every C connected component in
our input data and applying the modified
knapsack algorithm, we get a O∗(2n−C

2 )
algorithm.

Ternary shared tasks

branching algorithm

T1 T4 T2 T5 T3

P1 P2 P3

T4

T5 T5 T5

1

1 3

2

2 3

3

1 2 3

By assigning the shared tasks of our input
data on the first, the second, or on both
machines, we show that some schedules
are unfeasible. This is the case here if the
shared task T4 have to be performed on
the first machine, while the shared task
T5 have to be performed on the second
one, or if T4 have to be performed on the
second machine while T5 have to be per-
formed on the first.
By establishing a lower bound on the
number of shared task assignments pro-
ducing unfeasible schedules for any given
input data, we demonstrate that this way
of proceeding yields a O∗(7c

22
n
2) step algo-

rithm.

Binary shared

tasks branching

T4

T5 T5

1

1 2

2

1 2

T1

T2

T3

T4T5 T6

P1

P2

P3

P4

T1

T2

T3

T4T5 T6

P1

P2

P3

For this approach, we consider that each shared task can either be assigned to both machines, or to
only one without specifying which one. The first interest is that the tree enumerating the shared task
assignments creates two branches at each step.
The shared tasks adjacent to exactly two programs (the shared tasks of degree two) have a property
allowing us to reduce the complexity of the associated algorithm. Indeed, like illustrated with those
two hypergraphs, if a shared task of degree two have to be scheduled on one machine, then the two
neighboring programs will also be scheduled on this machine. And if a shared task of degree two have
to be scheduled on both machines, then the two neighboring programs will be scheduled on different
machines. The number of elements given to our modified knapsack algorithm is then reduced. This
technique yields a O(2c2

n
2) step algorithm. More involved techniques allow us give an algorithm

running in O(1.5c2
2
n) steps.

Experiments

We implemented all these algorithms in
the C language, and conducted experi-
ments on different instances of our prob-
lem. We focused on three main parame-
ters while building our test instances: the
number of programs (20 to 35), the num-
ber of shared tasks (10 to 35), and the
number of connected components (1 to 6)
present in our input data. Twenty differ-
ent instances have been tested for a given
combination of those parameters.

Conclusion and

Perspectives

We have investigated the NP-complete
problem of Pagination , and presented
different exact algorithms with worst-case
time-complexity guarantees, using vari-
ous branching techniques. We are cur-
rently working on improving these algo-
rithms, and are also studying the field of
parameterized complexity with the pur-
pose of establishing a fixed-parameter al-
gorithm and obtaining a kernel for Pag-
ination.


