
Conclusion
▪ This poster presents the thesis objectives and the key issues

▪ It presents the developments carried out in the implementation of IOHMM parameter

learning, diagnostic and prognostic application

▪ Finally, the learning methodology and the results are projected.
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The Baum Welch: EM Estimation of Parameters 
The Baum Welch algorithm uses the FBA algorithm to estimate parameters of the model Λ. 

▪ State transition Probability, 𝜀𝑘 𝑖, 𝑗 =
𝛼𝑖 𝑋𝑘 .𝑎𝑝(𝑈𝑘)𝑖𝑗.𝑏

𝑞
𝑗𝑘.𝛽𝑗 𝑋𝑘+1

𝑃 𝑌1:𝑘
𝑞
|𝛬

▪ Update transition parameters, ො𝑎𝑝𝑖𝑗 =
σ𝑘=1
𝐾−1 𝜀𝑘 𝑖,𝑗 . 1𝑋𝑘(𝑈𝑘=𝑝)

σ𝑘=1
𝐾−1 𝜔𝑘 𝑗 .1𝑋𝑘(𝑈𝑘=𝑝)

, where 1𝑋𝑘(𝑈𝑘=𝑝) = {0 𝑜𝑡ℎ𝑒𝑟𝑠
1 𝑖𝑓 𝑋𝑘(𝑈𝑘=𝑝)

▪ Update emission parameters,𝑏𝑞𝑗𝑘 =
σ𝑘=1
𝐾 𝜔𝑘 𝑗 .1𝒀𝒒𝑘=𝑣𝑚

σ𝑘=1
𝐾 𝜔𝑘 𝑗

, where 1𝑌𝑞𝑘=𝑣𝑚 = {0 𝑜𝑡ℎ𝑒𝑟𝑠
1 𝑖𝑓 𝑌𝑞𝑘=𝑣𝑚

The Viterbi Equation
The Viterbi algorithm is used for computing diagnosis of the system

▪ Forward recursion, 𝛾(𝑋𝑘) = 𝑚𝑎𝑥 𝑋𝑘−1 𝑃(𝑌𝑞𝑘|𝑋𝑘)𝑃(𝑋𝑘|𝑋𝑘−1𝑈𝑘−1)𝛾(𝑋𝑘−1)

▪ Backward recursion, δ (𝑋𝑘) = 𝑃(𝑌𝑞𝑘+1|𝑋𝑘+1) + 𝑚𝑎𝑥 𝑋𝑘+1 {δ(𝑋𝑘+1) +

𝑃(𝑋𝑘+1|𝑋𝑘 , 𝑈𝑘)}

Key Issues of the Thesis
▪ Learning IOHMM models of system health based on data sequences

▪ Prognosis of system health and managing the remaining useful life

▪ Qualify model confidence

[Mention: This thesis is under a contract of “Contrat Doctoral”]
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Thesis Objective
The objective is to manage the remaining useful life (RUL) of the system by controlling its 

future operating conditions. 

▪ The input-output hidden Markov model (IOHMM) diagnostic system health state 𝑋𝑘 at time 𝑘 when any new

measurement (𝑌𝑘) come from output 𝑌 and then prognostic the system 𝑅𝑈𝐿𝑘 according to the estimated health

state ( 𝑋𝑘) of the system.

▪ After that, the 𝑅𝑈𝐿𝑘 is taken into account through the reference manager which applies a proposed technique

and decides the next operating condition that should get the given/target RUL of the system.

1

Controlling the operating condition based on the estimated RUL

2
IOHMM Process Flow Diagram 

The Forward-Backward Algorithm (FBA)
This is an inference algorithm for IOHMMs which computes the posterior distribution of

all hidden states given the sequence of observations

▪ Forward recursion, 𝛼 𝑋𝑘 = σ𝑋𝑘−1=𝑠1
𝑁 𝛼 𝑋𝑘−1 𝑃 𝑋𝑘|𝑋𝑘−1, 𝑈𝑘−1 𝑃 𝑌𝑞𝑘|𝑋𝑘

▪ Backward recursion, 𝛽 𝑋𝑘 = σ𝑋𝑘+1=𝑠1
𝑁 𝛽 𝑋𝑘+1 𝑃 𝑋𝑘+1|𝑋𝑘 , 𝑈𝑘 𝑃 𝑌𝑞𝑘+1|𝑋𝑘+1

▪ The evaluation, 𝑃 𝑌𝑘
𝑞
|𝛬 = 

𝑖=1

𝑁
𝛼𝑖(𝑋𝑘) 𝛽𝑖 𝑋𝑘 ; ∀𝑘

where 𝛬 is the given model, 𝑁 is the number of hidden states and 𝑘 is the time instant
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Distribution of matrices parameters Parameter distance between learned and original models

Offline Diagnostic over the time from start to end Different RULs using different operating conditions

Results: Parameter estimation with confidence and Offline Prognostic 5

▪ 𝑋 is health state

▪ 𝑋𝑘 is estimated health state at 

time 𝑘
▪ 𝑈𝑘 is vector of input controls

▪ 𝑌𝑘is vector of observation output

▪ 𝑅𝑈𝐿𝑘 is estimated remaining 

useful life

𝐴𝑁 = 𝑃 𝑋𝑘 𝑋𝑘−1, 𝑈𝑘−1

𝐵𝑀 = 𝑃 𝑌𝑘
𝑀 𝑋𝑘

𝜋 = 𝑃 𝑋1

)Λ = (𝐴𝑁 , 𝐵𝑀, 𝜋

▪ 𝐴𝑁 is transition matrices

▪ 𝑁 is number of transition 

matrices 

▪ 𝐵𝑀 is emission matrices

▪ 𝑀 is number of emission 

matrices.

▪ 𝜋 is initial state 

distribution

▪ 𝑋𝑘 is estimated health state 

at time 𝑘
▪ 𝑈𝑘+1 is vector of next 

input control at time 𝑘
▪ 𝑌𝑘

𝑀 is vector of 

observation outputs 𝑌𝑀

▪ 𝑅𝑈𝐿𝑘 is estimated 

remaining useful life

▪ “Target” is a given RUL
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[Note: These algorithms are adapted from HMM to IOHMM in current developments of the thesis]
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