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Thesis Objective
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The objective is to manage the remaining useful life (RUL) of the system by controlling its

future operating conditions.

= The input-output hidden Markov model (IOHMM) diagnostic system health state X, at time k when any new
measurement (Y, ) come from output Y and then prognostic the system RUL,, according to the estimated health

state (X,,) of the system.

= After that, the RUL, is taken into account through the reference manager which applies a proposed technique
and decides the next operating condition that should get the given/target RUL of the system.
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Controlling the operating condition based on the estimated RUL

X is health state

X, is estimated health state at
time k

U, is vector of input controls

Y, is vector of observation output
RUL, is estimated remaining
useful life

The Baum Welch: EM Estimation of Parameters
The Baum Welch algorithm uses the FBA algorithm to estimate parameters of the model A.

= State transition Probability, &, (i,j) =

= Update transition parameters, a?;;

= Update emission parameters,T)qjk =

a;(Xg)-aP (Ug)ij-b9jr-Bj(Xi+1)

The Viterbi Equation
The Viterbi algorithm is used for computing diagnosis of the system
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= Forward I'eCUI’Sion, )/(Xk) = max(Xk_l) P(qu|Xk)P(Xk|Xk—1Uk—1))/(Xk—1)

= Backward recursion, & (Xi) = P(Y9y411Xk41) + maxx,, y2{8(Xk41) +

P(Xi+11Xk, Ur)}
[Note: These algorithms are adapted from HMM to IOHMM in current developments of the thesis]

IOHMM Process Flow Diagram
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A = (AN, BM, 1)

AN = P(Xy|Xy—1, Ug—1)

BM = p(YM|X,)
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Online Pronostic

Model = P(Xl)
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= “Target” is a given RUL

Results: Parameter estimation with confidence and Offline Prognostic
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Diagnostic by IOHMM (Training by All Data)
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Diagnostic by IOHMM (Training by Bootstrap)
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Conclusion

= This poster presents the thesis objectives and the key issues
= |t presents the developments carried out in the implementation of IOHMM parameter

learning, diagnostic and prognostic application
= Finally, the learning methodology and the results are projected.
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Key Issues of the Thesis

= Learning IOHMM models of system health based on data sequences
= Prognosis of system health and managing the remaining useful life

= Qualify model confidence

[Mention: This thesis is under a contract of “Contrat Doctoral”]

The Forward-Backward Algorithm (FBA)
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This is an inference algorithm for IOHMMSs which computes the posterior distribution of

all hidden states given the sequence of observations

= Forward recursion, a(X;) = X%, =5, @(Xx1)P(Xi|Xg_1, U1 )P(Y 9| Xy)

= Backward recursion, B(X) = XX, . =5, BXpe+1)P K1 [ Xi, U P Y 911X 41)

= The evaluation, P(Y,|A) = Zil a;(Xy,) B; (X)) ; Vk

where A is the given model, N is the number of hidden states and k is the time instant
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