Post-quantum secure key-exchange

Simon MASSON simon.masson@loria.fr Advisors: Aurore Guillevic, Emmanuel Thomé

December 5, 2019 Journée d'Automne de l'École Doctorale IAEM Nancy, France

Discrete logarithm problem in cryptography

Given a cyclic group (G, \star) with a generator g, and another element h, find the integer s such that $h = g^{\star s} := \underbrace{g \star g \star \ldots \star g}_{s \text{ times}}$. This problem is **exponentially hard** in some particular groups. Even with your laptop, you cannot solve it in such groups.

Example 1. $(\mathbb{Z}/n\mathbb{Z}, +)$

Let n be an integer ≥ 2 . With the addition law, $G = \mathbb{Z}/n\mathbb{Z}$ is a cyclic group.

Example 2. Invertibles of a finite field $\mathbb{F}_{p^k}^{\times}$

The set of invertibles of a finite field \mathbb{F}_{p^k} is a cyclic group for the multiplication law. Subexponential algorithms compute the discrete logarithm on these groups. The discrete logarithm problem is solved in **subexponential** time: it is the *flagship* topic of CARAMBA team (LORIA).

Example 3. Elliptic curves

Points of an elliptic curve defined over \mathbb{F}_p with the geometric group law described below is a finite abelian group. The discrete logarithm problem is solved in **exponential** time on this group. The best algorithm is $O(\sqrt{\#G})$ on a cyclic subgroup of the curve group of points.

Diffie-Hellman

Let $G = \langle g \rangle$ with a hard discrete logarithm problem. Alice and Bob can share a common secret: $g^{\star a}$

Step 1. Alice and Bob choose secret integers a and bStep 2. Alice sends to Bob $g^{\star a}$ Step 3. Bob sends to Alice $g^{\star b}$ Step 4. The common secret is $(g^{\star a})^{\star b}$

 $q^{\star b}$

 $a \in \mathbb{Z}$

Quantum computer

Discrete logarithm problem on a quantum computer is solved in **polynomial** time for finite fields and elliptic curves !

Isogeny of elliptic curves

An isogeny is a morphism of elliptic curves $\varphi : E_1 \longrightarrow E_2$ such that $\varphi(0_{E_1}) = 0_{E_2}$. Recover the isogeny φ from the two curves E_1 and E_2 is **bard** when deg(φ) is large even with a quantum computer

Diffie-Hellman becomes post-quantum resistant using isogenies.

NIST Standardization key-exchange:

 $b \in \mathbb{Z}$

Alice and Bob choose a secret walk on the graph of supersingular curves defined over \mathbb{F}_{p^2} (also possible over \mathbb{F}_p). They publish their target curves and additional informations. They compute their walk from the other curve to get a common shared

Example of degree 3 isogeny graph over \mathbb{F}_{p^2} . The graph is expander.

Contributions

curve.

Cocks-Pinch curves of embedding degrees five to eight and optimal ate pairing computation with Aurore Guillevic and Emmanuel Thomé ia.cr/2019/431 In revision for Design, Codes and Cryptography journal. Verifiable delay functions from supersingular isogenies and pairings
with Luca De Feo, Christophe Petit and Antonio Sanso
ia.cr/2019/166
Accepted at Asiacrypt 2019 conference.

officient offici

