 Pierre-Adrien Tahay (thèse codirigée par I. Marcovici et T. Stoll)
pierre-adrien.tahay@univ-lorraine.fi

Abstract

In 2015: Construction for a prime number p of p-automatic sequences by linear cellular automata with memory (Rowland and Yassawi) [2]
In 2018: Other constructions for certain nonautomatic sequences by nonlinear cellular automata, such as the characteristic sequence of the integer polynomials and the Fibonacci word [1].

Cellular automata

A one-dimensional cellular automaton (CA) is a dynamical system $\left(\mathcal{A}^{\mathbb{Z}}, F\right)$, where \mathcal{A} is a finite set, and where the map $F: \mathcal{A}^{\mathbb{Z}} \rightarrow \mathcal{A}^{\mathbb{Z}}$ is defined by a local rule which acts uniformly and synchronously on the configuration space.
Precisely, there exists an integer $r \geq 0$ called the radius of the CA, and a local rule $f: \mathcal{A}^{2 r+1} \rightarrow \mathcal{A}$ such that $\forall x \in \mathcal{A}^{\bar{Z}}, \forall k \in \mathbb{Z}, F(x)_{k}=f\left(\left(x_{k+i}\right)_{-r \leq i \leq r}\right)$.

Example
We consider $\mathcal{A}=\{0,1\}$ whe rule $f(a, b, c)=a+c$.We stat by ine inita We consider $\mathcal{A}=\{0,1\}$ and the local rule $f(a, b, c)=a+c$. We start by the initial
condition $x_{0}=1$ and $x_{k}=0$ for all $k \neq 0$. We code 0 by a white cell and 1 by a

Automatic sequence

A deterministic finite automaton with output (DFAO) is a 6 -tuple $\left(\mathcal{Q}, \Sigma_{k}, \delta, s_{0}, \mathcal{A}, \omega\right)$ where \mathcal{Q} is a finite set of states, $\Sigma_{k}=\{0,1, \ldots, k-1\}, s_{0} \in \mathcal{Q}$ is the initial state \mathcal{A} is a finite alphabet, $\omega: \mathcal{Q} \longrightarrow \mathcal{A}$ is the output function, and $\delta: \mathcal{Q} \times \Sigma_{h} \longrightarrow \mathcal{Q}$ is the transition function.
A sequence $\left(u_{n}\right)_{n \geqslant 0}$ of elements in \mathcal{A} is k-automatic if there is a DFAO
$\left.\mathcal{Q}, \Sigma_{k}, \delta, s_{0}, \mathcal{A}, \omega\right)$ such that $u_{n}=\omega\left(\delta\left(s_{0},(n)_{k}\right)\right)$ for all $n \geqslant 0$.
Example (Thue-Morse sequence)

The Thue-Morse sequence is defined by $t_{n}= \begin{cases}0, & \text { if the number of } 1 \text { 's in }(n)_{2} \text { is even; } \\ 1, & \text { otherwise. }\end{cases}$ $\left(t_{n}\right)_{n>0}=0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0$,

Theorem (Rowland and Yassawi, 2015)

Let p be a prime number and q be a power of p. A sequence of elements in \mathbb{F}_{q} is p-automatic if and only if it is a column of a spacetime diagram of a linear cellular automaton with memory ver \mathbb{F}_{q} whose initial conditions are eventually periodic in both directions.

Example (construction of the Thue-Morse sequence)

Construction of polynomial sequences

Let $P(X) \in \mathbb{Q}[X]$ denote a polynomial of degree $d \geq 1$ with $P(\mathbb{N}) \subset \mathbb{N}$. Then the sequence $u=\mathbf{1}_{P(\mathbb{N})}$ can be obtained by a CA

Fibonacci word

Fibonacci word: morphic sequence which is the unique fixed point of the substitution σ defined by $0 \mapsto 01$ and $1 \mapsto 0$.
Let $w_{1}=0$ and for $n \geq 1, w_{n+1}=\sigma\left(w_{n}\right)$. Then

$$
\begin{aligned}
& w_{1}=0 \\
& w_{2}=01 \\
& \vdots \\
& w_{7}=010010100100101001010
\end{aligned}
$$

and the Fibonacci word is the limit of these words.
Construction of the Fibonacci sequence and the Fibonacci word

1. More generally, can any morphic sequence be obtained by a CA? There is a close connection between one-dimensional linear CA and p-automatic sequences. Is there an analogous statement for higher dimensional linear CA?

References

[1] I. Marcovici, T. Stoll, P.-A. Tahay, Construction of Some Nonautomatic Sequence by Cellular Automata, Cellular automata and discrete complex systems, Lecture Notes in Comput. Sci., 10875 (2018), 113-126.
[2] E. Rowland, R. Yassawi, A characterization of p-automatic sequences as column of linear cellular automata, Adv. Appl. Math. (2015), 68-89.

