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The problem description

The Pagination Problem has four inputs.
• A set of n symbols

• A collection of m subsets over these symbols: the tiles

• An infinite number of container in which we are going to store the tiles: the pages

• The integer capacity of each container: C
Goal: find a repartition using as few pages as possible while following two rules:

• All the tiles must be assigned

• All the symbols of a tile must be on a page

Particularity: if two (or more) tiles are on the same page and if they have common
symbols, these symbols are not repeated. Thus, it can lead to a great space saving.

Notation: Symbols can have weight that are noted pi. We denote the sum
of all the weights P =

∑n
i=1 pi

Application

• Symbols → Memory pages

• Tiles → Virtual machines

• Containers → Servers

• The integer capacity

One objective of a provider is to find the optimal scheduling of the Virtual Machines
(VM) on his servers in order to earn as much money as possible i.e. he wants to be
able to use as few servers as possible while accessing as many client requests as possible.

Theoretical work

It was proven that the problem is NP-complete which means it is unrealistic to hope
to find the optimal value in reasonable time for every possible inputs.
So we took a decision: we agree that we may not have the best solution as long as we
are sure that the solution given by our algorithm is not too bad and if we have it in
acceptable time.
As we design algorithms with guaranteed performance, we have to make sure
with mathematical proofs that the distance between the optimal value OPT and the
value of the solution returned by our approximation algorithm H is bounded.
The best kind of approximation algorithms we can hope to design are the FPTAS
which are described in the next paragraph.

Fully Polynomial Time Approximation Scheme

The FPTAS is a family of algorithms and which is the best technics we have to solve the
NP-complete problems. One of the first approximation scheme was proposed in [3]. An approx-
imation algorithm is an FPTAS if it meets both following criteria:

• It has a very good time complexity: poly(input size, 1
ε)

• The distance between the optimal value and the one given by the algorithm is very small:
H ≤ (1 + ε)OPT

→ The smallest the ε, the better the approximation but we pay this precision increase in the
time complexity.

One of the special cases

We focused our work for a while on one special case we found in the literature (see [1]). In this
special case, we suppose there is a hierarchy in the tiles. This hierarchy can be represented by a
tree (see Figure 2).
We proved that this special case is still NP-complete.

The main points

We began our work by designing an exact algorithm to solve the special case. We wrote a
Dynamic Programming algorithm. Its principle is simple: it will iterate as many times as there
are tiles and a during each iteration, the alorithm will process one tile. Thus it will create partial
solution at each iteration except during the last one.
The main problem in the DP algorithm is the enormous number of partial solutions it will create
during its execution. So we compromised: we will not keep every partial solutions generated.
At the end of each iteration, we are going to prune the set of partial solutions and only keep a
small number of them. They will be called the representatives.

Theoretical comparison

We designed two FPTAS from the same Dynamic Programming algorithm which is
an exact algorithm (for every inputs, it gives the best solution).
Here is a table of the comparison of their theoretical results:

DP algo FPTAS 1 FPTAS 2

#Partial sol. generated O(m2.P ) O(m
4

ε2
) O

(
m3

ε2

)
Time complexity O(m3.P ) O(m

5

ε2
) O

(
m4

ε2

)
Value OPT (1 + ε) OPT (1 + ε) OPT

Computational results

Here are two bar charts we created based on experiments we performed on a laptop
computer with a I7 7600U CPU with a frequency of 2.80 GHz and 15.9Go of RAM.
We coded our algorithms in Python Anaconda 3.7.1.
We ran our algorithms on inputs with 100 tiles and with an ε = 0.1
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Figure 2: an example of a tree

Figure 1: distance between OPT and H
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