# There and back again: a tale of boomerang attacks

# Paul HUYNH

Advisor: Marine MINIER

Team Caramba, LORIA, Université de Lorraine



## **Block Ciphers**

Family of n-bit permutations parameterized by a key K used for data encryption i.e. turning a message M into a ciphertext C.

#### Iterative structure

 $E_K(M) = F_{k_{r-1}} \circ F_{k_{r-2}} \circ \cdots \circ F_{k_0}(M) = C$ 



Two major constructions for F

| Feistel |    | SPN |
|---------|----|-----|
|         | k. |     |

## The Sandwich Attack

A Practical-Time Attack on the A5/3 Cryptosystem Used in Third Generation GSM Telephony: Dunkelman, Keller, Shamir, 2010

### **Basic distinguisher**

Rewrite E = E<sub>1</sub> ∘ E<sub>0</sub>
Find good differentials over E<sub>0</sub> and E<sub>1</sub>:
P(α →<sub>E<sub>0</sub></sub> β) = p
P(γ →<sub>E<sub>1</sub></sub> δ) = q

Expected probability of  $p^2q^2$ 



## The sandwich attack

•  $E = E_1 \circ E_m \circ E_0$ •  $E_m$  of 1 round





Both constructions include non-linear components. In most cases, boolean mappings called substitution boxes (or *Sboxes*) are used.

A good block cipher must behave like a random permutation !

Attacking block ciphers

Differential Cryptanalysis of DES-like Cryptosystems, Biham and Shamir, 1990

For a random permutation  $\pi$  of  $\mathbb{F}_2^n$  and for any differences  $\delta, \Delta \in \mathbb{F}_2^n \setminus \{0\}$ 

 $Pr_X[\pi(X+\boldsymbol{\delta})+\pi(X)=\Delta]=\frac{1}{2^n-1}$ 

## Core idea

Exploiting a bias in the difference distribution of the cipher

 $M \xrightarrow{K} C$ 

Incompatibilities can occur → probability 0 instead of p<sup>2</sup>q<sup>2</sup>
 The problems come from interactions at the junction of the two trails

 $\rightarrow$  how to compute r ?

## The BCT: Automation of the Analysis of 1-round $E_m$ for SPN

Boomerang Connectivity Table: A New Cryptanalysis Tool: Cid, Huang, Peyrin, Sasaki, Song, 2018.

Probability over 1 round of  $E_m$  = product of the probabilities over each Sbox S





#### The problem we have solved [1]



The cipher is weak if one can exhibit a path from an input difference  $\delta$  to an output difference  $\Delta$  (i.e. a *differential characteristic*) with high probability.

#### Consequences

Defending against differential cryptanalysis becomes a design goal: **no differentials of high probability must exist in the designs** 

But...

The Boomerang Attack, David Wagner, FSE 1999:

 No need of high-probability differentials on the cipher to attack it, only on both halves of it

## **Basic Boomerang Distinguisher**

- Pick  $M_1$  at random, ask for its ciphertext  $C_1$
- Ask for  $C_2$ , the ciphertext of  $M_2 = M_1 \oplus \alpha$
- Compute  $C_3 = C_1 \oplus \delta$ ,  $C_4 = C_2 \oplus \delta$
- Ask for their decryption  $(M_3, M_4)$
- Check if  $M_3 \oplus M_4 = \alpha$ .

The theory of Cid et al. is only valid for SPN ciphers, quid of Feistel constructions?

- Introduction of the FBCT (Feistel Boomerang Connectivity Table)
- Generic formula for a middle part made of an arbitrary number of rounds: the **FBET**
- Proof that a former boomerang attack on LBlock was incorrect
- 16-round boomerang distinguisher on LBlock-s with  $E_m$  variying from 2 to 8 rounds Interesting probability of  $2^{-56.14}$  found in the 8-round case.



 $FBCT(\Delta_i^L, \nabla_o^R) = \#\{x | S(x) \oplus S(x \oplus \Delta_i^L) \oplus S(x \oplus \nabla_o^R) \oplus S(x \oplus \Delta_i^L \oplus \nabla_o^R) = 0\}$  $\rightarrow$  Number of times the second order derivative at points  $(\Delta_i, \nabla_o)$  cancels out

#### Properties

#### Symmetry $FBCT(\Delta_i, \nabla_o) = FBCT(\nabla_o, \Delta_i)$



We have a distinguisher if  $\alpha$  'comes back' more often than for a random permutation.

Diagonal FBCT $(\Delta_i, \Delta_i) = 2^n$ Multiplicity FBCT $(\Delta_i, \nabla_o) \equiv 0 \mod 4$ Equalities FBCT $(\Delta_i, \nabla_o) = \text{FBCT}(\Delta_i, \Delta_i \oplus \nabla_o)$ 

What's next ?

- References
- Automation of the search of the best parameters for a Boomerang attack taking into account the FBET
- Application to DES and other important Feistel ciphers: CLEFIA, Twine ...
- Related-key case (differences in the key as well)

[1] On the Feistel Counterpart of the Boomerang Connectivity Table
 Introduction and Analysis of the FBCT
 Hamid Boukerrou, Paul Huynh, Virginie Lallemand, Bimal Mandal and Marine Minier

Submitted to FSE 2020







