There and back again: a tale of boomerang attacks

Paul HUYNH
Advisor: Marine MINIER
Team Caramba, LORIA, Université de Lorraine

Block Ciphers

Family of n -bit permutations parameterized by a key K used for data encryption i.e. turning a message M into a ciphertext C.

Iterative structure

$E_{K}(M)=F_{k_{r-1}} \circ F_{k_{r-2}} \circ \cdots \circ F_{k_{0}}(M)=C$

Two major constructions for F

- Feistel

Both constructions include non-linear components. In most cases, boolean mappings called substitution boxes (or Sboxes) are used.

A good block cipher must behave like a random

 permutation!Attacking block ciphers
Differential Cryptanalysis of DES-like Cryptosystems, Biham and Shamir, 1990

For a random permutation π of \mathbb{F}_{2}^{n} and for any differences $\delta, \Delta \in \mathbb{F}_{2}^{n} \backslash\{0\}$

$$
\operatorname{Pr}_{X}[\pi(X+\delta)+\pi(X)=\Delta]=\frac{1}{2^{n}-1}
$$

Core idea

Exploiting a bias in the difference distribution of the cipher

The cipher is weak if one can exhibit a path from an input difference δ to an output difference Δ (i.e. a differential characteristic) with high probability.

Consequences

Defending against differential cryptanalysis becomes a design goal: no differentials of high probability must exist in the designs

But...

The Boomerang Attack, David Wagner, FSE 1999

- No need of high-probability differentials on the cipher to attack it, only on both halves of it

Basic Boomerang Distinguisher

- Pick M_{1} at random, ask for its ciphertext C_{1}
- Ask for C_{2}, the ciphertext of $M_{2}=M_{1} \oplus \alpha$
- Compute $C_{3}=C_{1} \oplus \delta, C_{4}=C_{2} \oplus \delta$
- Ask for their decryption (M_{3}, M_{4})
- Check if $M_{3} \oplus M_{4}=\alpha$.

We have a distinguisher if α 'comes back' more often than for a random permutation

The Sandwich Attack
A Practical-Time Attack on the A5/3 Cryptosystem Used in Third Generation GSM Telephony: Dunkelman, Keller, Shamir, 2010

Basic distinguisher

- Rewrite $E=E_{1} \circ E_{0}$
- Find good differentials over E_{0} and E_{1} :
$: \mathbb{P}\left(\alpha \rightarrow E_{0} \beta\right)=p$
$: \mathbb{P}\left(\gamma \rightarrow E_{1} \delta\right)=q$
Expected probability of $p^{2} q^{2}$

- Incompatibilities can occur \rightarrow probability 0 instead of $p^{2} q^{2}$
- The problems come from interactions at the junction of the two trails

The sandwich attack

- $E=E_{1} \circ E_{m} \circ E_{0}$
- E_{m} of 1 round

- Distinguisher in $p^{2} q^{2} r$
\rightarrow how to compute r ?

The BCT: Automation of the Analysis of 1-round E_{m} for SPN
Boomerang Connectivity Table: A New Cryptanalysis Tool: Cid, Huang, Peyrin, Sasaki, Song, 2018.
Probability over 1 round of $E_{m}=$ product of the probabilities over each Sbox S

$p=\frac{\mathrm{BCT}\left(\Delta_{i}, \nabla_{o}\right)}{2^{s}}=\frac{\#\left\{x \mid S^{-1}\left(S(x) \oplus \nabla_{o}\right) \oplus S^{-1}\left(S\left(x \oplus \Delta_{i}\right) \oplus \nabla_{o}\right)=\Delta_{i}\right\}}{2^{s}}$

The problem we have solved [1]
The theory of Cid et al. is only valid for SPN ciphers, quid of Feistel constructions?

- Introduction of the FBCT (Feistel Boomerang Connectivity Table)
- Generic formula for a middle part made of an arbitrary number of rounds: the FBET
- Proof that a former boomerang attack on LBlock was incorrect
- 16-round boomerang distinguisher on LBlock-s with E_{m} variying from 2 to 8 rounds Interesting probability of $2^{-56.14}$ found in the 8 -round case.

The FBCT: overview

$\operatorname{FBCT}\left(\Delta_{i}^{L}, \nabla_{o}^{R}\right)=\#\left\{x \mid S(x) \oplus S\left(x \oplus \Delta_{i}^{L}\right) \oplus S\left(x \oplus \nabla_{o}^{R}\right) \oplus S\left(x \oplus \Delta_{i}^{L} \oplus \nabla_{o}^{R}\right)=0\right\}$
\rightarrow Number of times the second order derivative at points (Δ_{i}, ∇_{o}) cancels out

Properties

Symmetry $\operatorname{FBCT}\left(\Delta_{i}, \nabla_{o}\right)=\operatorname{FBCT}\left(\nabla_{o}, \Delta_{i}\right)$
Diagonal $\operatorname{FBCT}\left(\Delta_{i}, \Delta_{i}\right)=2^{n}$
Multiplicity $\operatorname{FBCT}\left(\Delta_{i}, \nabla_{o}\right) \equiv 0 \bmod 4$
Equalities $\operatorname{FBCT}\left(\Delta_{i}, \nabla_{o}\right)=\operatorname{FBCT}\left(\Delta_{i}, \Delta_{i} \oplus \nabla_{o}\right)$

What's next?

References

- Automation of the search of the best parameters for a Boomerang attack taking into account the FBET
- Application to DES and other important Feistel ciphers: CLEFIA Twine
- Related-key case (differences in the key as well)
[1] On the Feistel Counterpart of the Boomerang Connectivity Table - Introduction and Analysis of the FBCT

Hamid Boukerrou, Paul Huynh, Virginie Lallemand, Bimal Mandal and Marine Minier
Submitted to FSE 2020

II Laboratoirie lorain de recherche

