Constant mean curvature surfaces into 3-Homogeneous Manifolds
 lury Domingos ${ }^{1,2}$

UNIVERSITÉ DE LORRAINE

Joint work with Benoît Daniel ${ }^{1}$ and Feliciano Vitório ${ }^{2}$
${ }^{1}$ Institut Élie Cartan de Lorraine
${ }^{2}$ Universidade Federal de Alagoas
domingos1@univ-lorraine.fr
 DE ALAGOAS

Introduction

Surfaces with constant mean curvature (CMC) take an im portant place in differential geometry since the 18th century. An interesting problem involving the intrinsic curvature K and the mean curvature H is the classification problem of H-CMC surfaces with constant intrinsic curvature K in some ambient 3-manifold.

The aim of the work is classify the CMC surfaces with con stant intrinsic curvature in in some homogeneous Rieman nian 3-manifolds. We say that a Riemaannian 3-manifold (M, g) is homogeneous if for all $p, q \in M$ there is an isometry f such that $f(p)=q$. Roughly speaking, M looks the same at all points, even though, standing at one point, M can look different in different directions.

A background history

Let Σ be an oriented surface in \mathbb{R}^{3} and consider a parametrization $X: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ of $\Sigma=X(U)$. For $\Sigma \subset \mathbb{R}^{3}$ we have two important curvatures:

- Gauss curvature K : depends only the induced metric on Σ (Gauss's Theorema Egregium)
- Mean curvature $H:$ if $N: \Sigma \rightarrow \mathbb{R}^{3}$ is the unit normal vector field of Σ, the mean curvature of Σ at $p \in \Sigma$ is defined by

$$
\begin{aligned}
H(p) & =\frac{1}{2} \operatorname{tr}\left(-d N_{p}\right) \\
& =\frac{k_{1}(p)+k_{2}(p)}{2},
\end{aligned}
$$

where $k_{1}(p)$ and $k_{2}(p)$ are the principal curvatures of Σ at the point p.
We say that Σ is a constant mean curvature surface if H is constant ($H-\mathrm{CMC}$). If $H=0$ we say that Σ is a minimal surface.

The study of CMC surfaces was initially motivated by variational problems, such as the minimization of the area with or without a constraint on the volume enclosed by the surface.

The first examples of minimal surfaces in \mathbb{R}^{3} were given by Lagrange (1761), Meusnier (1776):

Figure 1: Helicoid

Figure 2: Catenoid
The first examples of CMC surfaces with $H \neq 0$ were the round sphere and the right cylinder. In the 19th century, Delaunay gave a systematic way to obtain non-zero con stant mean curvature revolution surfaces in \mathbb{R}^{3} :

Figure 3: Nodoid

Figure 4: Unduloid
What are the surfaces in \mathbb{R}^{3} such that K and H are constant?

Levi-Civita (1937): Let Σ be an H-CMC surface in \mathbb{R}^{3} with K constant. Then

- either $H=0, K=0$ and Σ is part of a plane
- or $H \neq 0, K=0$ and Σ is part of a right circular cylinder;
- or $H \neq 0, K=H^{2}$ and Σ is part of a 2-sphere of radius 1/H

Classification result in $\mathbb{S}^{2} \times \mathbb{R}$ and $\mathbb{H}^{2} \times \mathbb{R}$

Let $c \in \mathbb{R}^{*}$. For $c>0$, we consider \mathbb{S}_{c}^{2} the 2-sphere of radius $1 / \sqrt{c}$, in Euclidian space $\left(\mathbb{R}^{3}, \mathrm{~d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right)$ given by

$$
\mathbb{S}_{c}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1 / c\right\}
$$

endowed with the induced metric by \mathbb{R}^{3}. For $c<0$, we consider \mathbb{H}_{c}^{2} the hyperbolic plane given by

$$
\mathbb{H}_{c}^{2}=\left(\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\},-\frac{1}{c y^{2}}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right)\right) .
$$

We denote by \mathbb{M}_{c}^{2} the 2 -sphere \mathbb{S}_{c}^{2} when $c>0$ and the hyperbolic plane \mathbb{H}_{c}^{2} when $c<0$. Consider $\mathbb{M}_{c}^{2} \times \mathbb{R}=\{(x, t)$ $x \in \mathbb{M}_{c}^{2}$ and $\left.t \in \mathbb{R}\right\}$ endowed with the product metric.

The classification result for minimal surfaces in $\mathbb{M}_{c}^{2} \times \mathbb{R}$ was established in [1, Theorem 4.2]

Daniel (2015): Let Σ be a minimal surface in $\mathbb{M}_{c}^{2} \times \mathbb{R}$ with constant intrinsic curvature K. Then

- either Σ is totally geodesic and $K=0$ or $K=c$;
- or $c<0, K=c$ and Σ is part of an associate surface of the parabolic generalized catenoid.

In this direction, we proved the classification result for CMCsurfaces in $\mathbb{M}_{c}^{2} \times \mathbb{R}$ when $H \neq 0$.

Theorem 1. Let $H \neq 0$ and Σ be an $H-C M C$ surface in $\mathbb{M}_{c}^{2} \times \mathbb{R}$ with constant intrinsic curvature K. Then

- either $K=0$ and Σ is part of a vertical cylinder $\gamma \times \mathbb{R}$, where $\gamma \subset \mathbb{M}_{c}^{2}$ is a curve of geodesic curvature $2 H$
- or $c<0, K=4 H^{2}+c<0$ and Σ is part of either an Abresch-Rosenberg-Leite surface (Figure 5) or an helicoidal surface of Sa Earp and Toubiana (Figure 6).

Figure 5: ARL-surface, $H=1 / 4$

Figure 6: Helicoidal surface, $H=1 / 4$ (Sa Earp and Toubiana [2, Figure 12])

Classification result in $\mathbb{E}(\kappa, \tau)$ with $\tau \neq 0$

The manifold $\mathbb{E}(\kappa, \tau)$ is a 3-homogeneous space with a 4 dimensional isometry group; it is a Riemannian fibration o bundle curvature τ over \mathbb{M}_{κ}^{2}. These spaces are classified as follows:

- When $\tau=0, \mathbb{E}(\kappa, 0)$ is the product space $\mathbb{M}_{\kappa}^{2} \times \mathbb{R}$,
- When $\tau \neq 0$ and $\kappa>0, \mathbb{E}(\kappa, \tau)$ is a Berger sphere,
- When $\tau \neq 0$ and $\kappa=0, \mathbb{E}(0, \tau)$ is the Heisenberg group with a left invariant metric.
- When $\tau \neq 0$ and $\kappa<0, \mathbb{E}(\kappa, \tau)$ is the universal cover of $\mathrm{PSL}_{2}(\mathbb{R})$ with a left invariant metric, and we denote by $\mathrm{PSL}_{2}(\mathbb{R})$.
As an application of Theorem 11, we classify constant mean curvature surfaces in $\mathbb{E}(\kappa, \tau)$, for $\kappa-4 \tau^{2} \neq 0$, with constan intrinsic curvature
Theorem 2. Let κ and τ be real numbers such that $\tau \neq 0$ and $\kappa-4 \tau^{2} \neq 0$, and Σ be an $H-C M C$ surface in $\mathbb{E}(\kappa, \tau)$ with constant intrinsic curvature K. Then
- either $K=0$ and Σ is part of a vertical cylinder over a curve $\gamma \subset \mathbb{M}_{k}^{2}$ with geodesic curvature $2 H$;
- or $\kappa<0, K=\kappa$ and Σ is part of Peñafiel minimal surface invariant by parabolic isometries;
- or $\kappa<0, K=4 H^{2}+\kappa<0$ and Σ is part of a generalized Abresch-Rosenberg-Leite surface
- or $\kappa<0, K=4 H^{2}+\kappa<0$ and Σ is part of one of twin helicoidal surfaces (Figure 7 and 8).

Figure 7: Complete generating curve of a complete screw motion surface in $\widetilde{\mathrm{PSL}_{2}}(\mathbb{R})$, with $\tau=1 / 2$.

Figure 8: Complete screw motion surface with $(H, \varepsilon, \tau)=\left(\frac{\sqrt{\sqrt{2}-1}}{2},-1,1 / 2\right)$.

We remark that Theorems 1 and 2 together with [1, Theorem 4.2] give a complete classification of CMC surfaces in $\mathbb{E}(\kappa, \tau)$ with constant intrinsic curvature

References

[1] Benoît Daniel, Minimal isometric immersions into $\mathbb{S}^{2} \times \mathbb{R}$ and $\mathbb{H}^{2} \times \mathbb{R}$, Indiana Univ. Math. J. 64 (2015), no. 5, 425-1445. MR 3418447
[2] Ricardo Sa Earp and Eric Toubiana, Screw motion sur faces in $\mathbb{H}^{2} \times \mathbb{R}$ and $\mathbb{S}^{2} \times \mathbb{R}$, Illinois J. Math. 49 (2005), no. 4, 1323-1362. MR 2210365

