

Constant mean curvature surfaces into 3-Homogeneous Manifolds

lury Domingos 1,2

Joint work with Benoît Daniel¹ and Feliciano Vitório² ¹ Institut Élie Cartan de Lorraine ² Universidade Federal de Alagoas domingos1@univ-lorraine.fr

UNIVERSIDADE FEDERAL DE ALAGOAS

Introduction

Surfaces with constant mean curvature (CMC) take an important place in differential geometry since the 18th century. An interesting problem involving the intrinsic curvature K and the mean curvature H is the classification problem of H-CMC surfaces with constant intrinsic curvature K in some ambient 3-manifold.

Classification result in $\mathbb{E}(\kappa, \tau)$ with $\tau \neq 0$

The manifold $\mathbb{E}(\kappa, \tau)$ is a 3-homogeneous space with a 4dimensional isometry group; it is a Riemannian fibration of bundle curvature τ over \mathbb{M}^2_{κ} . These spaces are classified as follows:

The aim of the work is classify the CMC surfaces with constant intrinsic curvature in in some homogeneous Riemannian 3-manifolds. We say that a Riemaannian 3-manifold (M,g) is homogeneous if for all $p,q \in M$ there is an isometry f such that f(p) = q. Roughly speaking, M looks the same at all points, even though, standing at one point, Mcan look different in different directions.

A background history

Let Σ be an oriented surface in \mathbb{R}^3 and consider a parametrization $X : U \subset \mathbb{R}^2 \to \mathbb{R}^3$ of $\Sigma = X(U)$. For $\Sigma \subset \mathbb{R}^3$, we have two important curvatures:

• Gauss curvature K: depends only the induced metric on Σ (Gauss's Theorema Egregium).

• Mean curvature H: if $N : \Sigma \to \mathbb{R}^3$ is the unit normal vector field of Σ , the mean curvature of Σ at $p \in \Sigma$ is defined by

$$H(p) = \frac{1}{2} \operatorname{tr}(-dN_p) \\ = \frac{k_1(p) + k_2(p)}{2},$$

where $k_1(p)$ and $k_2(p)$ are the principal curvatures of Σ at the point p.

We say that Σ is a constant mean curvature surface if H is constant (*H*-CMC). If H = 0 we say that Σ is a minimal

Figure 4: Unduloid

What are the surfaces in \mathbb{R}^3 such that K and H are constant?

Levi-Civita (1937): Let Σ be an *H*-CMC surface in \mathbb{R}^3 with *K* constant. Then

- either H = 0, K = 0 and Σ is part of a plane;
- or *H* ≠ 0, *K* = 0 and ∑ is part of a right circular cylinder;
 or *H* ≠ 0, *K* = *H*² and ∑ is part of a 2-sphere of radius
- 1/H.

Classification result in $\mathbb{S}^2\times\mathbb{R}$ and $\mathbb{H}^2\times\mathbb{R}$

Let $c \in \mathbb{R}^*$. For c > 0, we consider \mathbb{S}_c^2 the 2-sphere of radius $1/\sqrt{c}$, in Euclidian space $(\mathbb{R}^3, dx^2 + dy^2 + dz^2)$ given by

 $\mathbb{S}_{c}^{2} = \Big\{ (x, y, z) \in \mathbb{R}^{3} : x^{2} + y^{2} + z^{2} = 1/c \Big\},\$

endowed with the induced metric by \mathbb{R}^3 . For c < 0, we consider \mathbb{H}^2_c the hyperbolic plane given by

 $\mathbb{H}_c^2 = \Big(\{(x,y)\in\mathbb{R}^2: y>0\}, -\frac{1}{cy^2}(\mathrm{d} x^2+\mathrm{d} y^2)\Big).$

We denote by \mathbb{M}^2_c the 2-sphere \mathbb{S}^2_c when c > 0 and the hy-

• When $\tau = 0$, $\mathbb{E}(\kappa, 0)$ is the product space $\mathbb{M}^2_{\kappa} \times \mathbb{R}$,

• When $\tau \neq 0$ and $\kappa > 0$, $\mathbb{E}(\kappa, \tau)$ is a Berger sphere,

- When $\tau \neq 0$ and $\kappa = 0$, $\mathbb{E}(0, \tau)$ is the Heisenberg group with a left invariant metric.
- When $\tau \neq 0$ and $\kappa < 0$, $\mathbb{E}(\kappa, \tau)$ is the universal cover of $PSL_2(\mathbb{R})$ with a left invariant metric, and we denote by $\widetilde{PSL}_2(\mathbb{R})$.

As an application of Theorem 1, we classify constant mean curvature surfaces in $\mathbb{E}(\kappa, \tau)$, for $\kappa - 4\tau^2 \neq 0$, with constant intrinsic curvature.

Theorem 2. Let κ and τ be real numbers such that $\tau \neq 0$ and $\kappa - 4\tau^2 \neq 0$, and Σ be an *H*-CMC surface in $\mathbb{E}(\kappa, \tau)$ with constant intrinsic curvature *K*. Then

- either K = 0 and Σ is part of a vertical cylinder over a curve $\gamma \subset \mathbb{M}^2_{\kappa}$ with geodesic curvature 2H;
- or $\kappa < 0$, $K = \kappa$ and Σ is part of Peñafiel minimal surface invariant by parabolic isometries;
- or $\kappa < 0$, $K = 4H^2 + \kappa < 0$ and Σ is part of a generalized Abresch-Rosenberg-Leite surface;
- or $\kappa < 0$, $K = 4H^2 + \kappa < 0$ and Σ is part of one of twin helicoidal surfaces (Figure 7 and 8).

surface.

The study of CMC surfaces was initially motivated by variational problems, such as the minimization of the area with or without a constraint on the volume enclosed by the surface.

The first examples of minimal surfaces in \mathbb{R}^3 were given by Lagrange (1761), Meusnier (1776):

Figure 1: Helicoid

perbolic plane \mathbb{H}^2_c when c < 0. Consider $\mathbb{M}^2_c \times \mathbb{R} = \{(x, t) : x \in \mathbb{M}^2_c \text{ and } t \in \mathbb{R}\}$ endowed with the product metric.

The classification result for minimal surfaces in $\mathbb{M}^2_c \times \mathbb{R}$ was established in [1, Theorem 4.2]:

Daniel (2015): Let Σ be a minimal surface in M_c² × ℝ with constant intrinsic curvature *K*. Then
either Σ is totally geodesic and *K* = 0 or *K* = *c*;
or *c* < 0, *K* = *c* and Σ is part of an associate surface of the parabolic generalized catenoid.

In this direction, we proved the classification result for CMC-surfaces in $\mathbb{M}^2_c \times \mathbb{R}$ when $H \neq 0$.

Theorem 1. Let H ≠ 0 and Σ be an H-CMC surface in M²_c × ℝ with constant intrinsic curvature K. Then
either K = 0 and Σ is part of a vertical cylinder γ × ℝ, where γ ⊂ M²_c is a curve of geodesic curvature 2H,
or c < 0, K = 4H² + c < 0 and Σ is part of either an Abresch-Rosenberg-Leite surface (Figure 5) or an helicoidal surface of Sa Earp and Toubiana (Figure 6).

motion surface in $\widetilde{PSL}_2(\mathbb{R})$, with $\tau = 1/2$.

Figure 2: Catenoid

The first examples of CMC surfaces with $H \neq 0$ were the round sphere and the right cylinder. In the 19th century, Delaunay gave a systematic way to obtain non-zero constant mean curvature revolution surfaces in \mathbb{R}^3 :

Figure 5: ARL-surface, H = 1/4.

Figure 6: Helicoidal surface, H = 1/4. (Sa Earp and Toubiana [2, Figure 12])

Figure 8: Complete screw motion surface with $(H, \varepsilon, \tau) = (\frac{\sqrt{\sqrt{2}-1}}{2}, -1, 1/2).$

We remark that Theorems 1 and 2 together with [1, Theorem 4.2] give a complete classification of CMC surfaces in $\mathbb{E}(\kappa, \tau)$ with constant intrinsic curvature.

References

[1] Benoît Daniel, *Minimal isometric immersions into* $\mathbb{S}^2 \times \mathbb{R}$ and $\mathbb{H}^2 \times \mathbb{R}$, Indiana Univ. Math. J. **64** (2015), no. 5, 1425–1445. MR 3418447

[2] Ricardo Sa Earp and Eric Toubiana, *Screw motion sur*faces in $\mathbb{H}^2 \times \mathbb{R}$ and $\mathbb{S}^2 \times \mathbb{R}$, Illinois J. Math. **49** (2005), no. 4, 1323–1362. MR 2210365