
Protecting code through Obfuscation
Reverse engineering and code tampering are widely used to
extract proprietary assets or bypass security checks from
software. Code protection techniques try to prevent man-at-the-
end attacks (i.e. when the attacker has full control over the
execution environment).
Common obfuscation techniques are quite resilient against basic
automatic reverse engineering, however code analysis improves
quickly. Attacks based on Dynamic Symbolic Execution (DSE)
appear to be very efficient.

Several dedicated protections against DSE-based attacks have
been proposed, yet the state of knowledge is pretty unclear and
few techniques have actually been implemented. Moreover DSE
has been proven very efficient against state-of-the-art
obfuscation tools using common transformations such as
virtualization and self-modification.
We want to propose a new class of dedicated protections
making attacks based on DSE inefficient. These techniques
should induce a substantial slowdown and be lightweight.

Dynamic Symbolic Execution
x = input
If (x != 0)

Return 0 If (x > 10)

Return 2Return 1

Path constraint: ϕ = (x≠0) ꓥ (x>10)

DSE simulates the execution of a program along its paths, systematically
generating inputs for each new discovered branch conditions. Inputs are
considered as symbolic variables whose values are not fixed. Every time the
engine encounters a conditional statement involving an input, it adds a constraint
to the symbolic value of the input. These constraints are then fed to a SMT solver
to generate input values leading to new paths.
We can point out three main issues with DSE that can be used to create dedicated
protections: hard constraints, path explosion and path divergence.

Path constraints can be hard to solve for
SMT solvers. For example, specific non-
linear operations such as multiplication or
division substantially increase the
complexity. This issue is critical to DSE
because if a constraint can not be solved, it
reduces the subset of paths the analysis is
able to explore.

To explore paths, the symbolic engine
needs to solve constraints and store all
pending states in memory. For these two
reasons, it is not reasonable to explore a
large subset of paths. Thus DSE can
realistically explore only a reduced number
of paths in a limited amount of time.

Computing precise and correct path
constraints can be difficult for certain
programs. If path constraints are not
computed precisely it can lead to path
divergence: feasible paths are missed or
unfeasible paths are taken. Either way the
symbolic analysis is not able to give a
correct view of the paths tree.

Find placement Add forking point

Anchorage policy Classes of forking points

Obfuscation scheme

Obfuscation scheme for Path-Oriented Protections

Hard Constraints Path Explosion Path Divergence

Mathilde OLLIVIER
Directeur : Jean-Yves MARION

Encadrant CEA : Sébastien BARDIN

…

Forking point: Location in code where a path
is split into two or more paths

Context Challenges

Good placement ?
Independance: forking points do not hinder each others’
impact on the symbolic analysis
Optimal composition: every paths contain at least k forking
points to ensure a sufficient slowdown


