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Motivation
Nuclear fusion is a way to produce energy from the nuclei of atoms. It
requires that two hydrogen atoms meet: deuterium + tritium → helium.
This requires a very high temperature  Extremely hot gas, ionized:
Plasma: ”soup” of various species of charged particles (ions, electrons...)

Figure: Tokamak

The tokamak is a toric chamber in-
tended for the study of plasmas and
the nuclear fusion. To produce energy,
one has to
• fill the chamber with plasma,
• confine the plasma by an external

magnetic field (limited volume, away
from the material wall),
• heat the plasma: percussion of atoms

To reach the needed temperature
(' 108 K) required for nuclear fusion,
one of plasma heating processes is by
electromagnetic waves. We send them
by antennas, which cover part of the
walls of the chamber. The electromag-
netic waves will be absorbed by the
plasma and transfer their energy to the
particles. Also, waves can be used for
diagnostics. Figure: Antenna

Physics problem: plasma-wave coupling.

Mathematical Model
Let Ω ⊂ R3 be a bounded open set, which represents the plasma volume in
the tokamak. We consider the following model for (t, x) ∈ R+ × Ω :
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with: b(x) : direction of the external magnetic field ;

ωps, Ωcs, νs : depending on x ;

Initial conditions: Js,0, E 0, B0. (5)

Indices 1 and 2: particle species ion and electron.

Boundary condition: ∂Ω = Γ = ΓA ∪ ΓP := antenna + the rest

E × n = 0 on ΓP, Perfectly conducting (6)

E × n + c B> = g (t, x) on ΓA. Silver–Müller (7)

We suppose that ΓP 6= ∅. Then,
according to ΓA, there are two cases:
Case 1: ΓA = ∅, the condition (6) is
imposed on the entire boundary.
Case 2: ΓA 6= ∅.

Figure: A cross-section of the domain Ω

Objective
Prove in both cases:

1. Well-posedness of the model (existence of solution)

2. Strong stability of the model (convergence of solution)

3. Exponential decay of the energy

Well-posedness of the model
We define the energy space X = [L2(Ω)]4 endowed with the norm
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The system (1)–(5) can be rewritten as an evolution equation :

∂tU + AU = 0, U(0) = U0 (8)

where A is unbounded operator in X. The domain of A is defined
according to each case [3]:
Case 1: we consider A1 := A and

D(A1) = L2(Ω)× L2(Ω)×H0(curl; Ω)×H(curl; Ω)

Case 2: we study first the case g = 0. We define A2 := A and

D(A2) = L2(Ω)× L2(Ω)×H, where

H = {(v ,w ) ∈ H0,ΓP
(curl; Ω)×H(curl; Ω) : v × n + cw> = 0 on ΓA}.

 The case g 6= 0 is a consequence of the case g = 0.

Theorem 1
The operator −A` generates a C0-semigroup of contractions
(T`(t))t≥0 on the energy space X for ` = 1, 2. Therefore for all
U0 ∈ X, the problem (8) has a unique solution U` ∈ C ([0,∞);X)
given by U`(t) = T`(t)U0, for all t ≥ 0.

Decay of the energy
We define the energy E := 1

2‖(J1, J2,E ,B)‖2
X and its derivative
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≤ 0 if g = 0.

Stability results
The following results are related to the spectral analysis of the operator
A` on the imaginary axis [1] [2] .
• Strong stability
We introduce the Hilbert space X̃` = X∩ ker(A`)

⊥. The space ker(A`) is
the set of stationary solutions, then the model (1)-(4) is invariant in X̃`.

Theorem 2
The problem (8) is strongly stable on the energy space X̃`, for
` = 1, 2, in the sense that

lim
t→+∞

‖T`(t)Ũ0‖X̃`
= 0, ∀Ũ0 ∈ X̃`.

• Exponential decay of the energy
Let K := L2(Ω)× L2(Ω)× L2(Ω)×H0,ΓP

(div0; Ω).

Theorem 3
The problem (8) is exponentially stable on X̃`, for ` = 1, 2, i.e.,
there exist two constants C , ω > 0 such that

‖T`(t)Ũ0‖X̃`
≤ Ce−ωt‖Ũ0‖X̃`

, ∀Ũ0 ∈ X̃`, ∀t ≥ 0.

Furthermore, under assumptions on B0, there exist a constant
M > 0 such that the solution satisfies

‖T`(t)U0 − (0, 0, 0,B0)>‖K ≤ Me−ωt‖U0‖K, ∀U0 ∈ K, ∀t ≥ 0.

Physical interpretation of the results
The energy of the wave is absorbed by the plasma and transformed into
heat to heat the plasma. The decay of the energy is expected since there
is absorption: collisions between particles (νs: fluid friction).
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