Distributed Cooperative Control for DC Microgrids

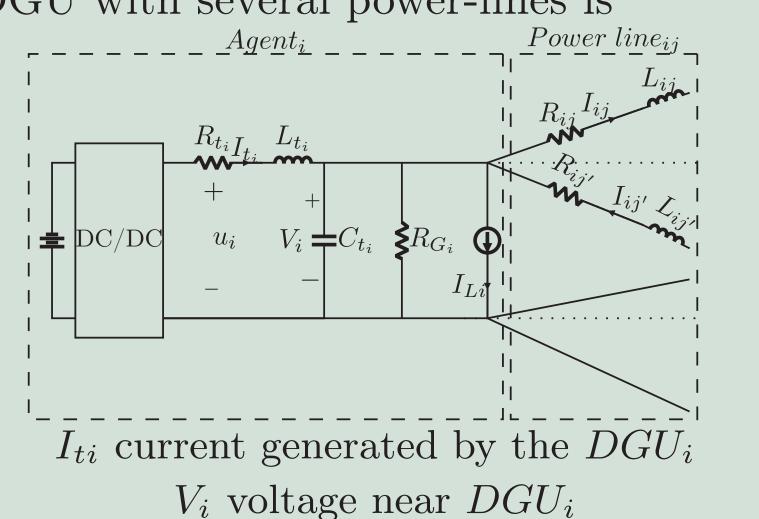
Current Sharing, Average Voltage Regulation, and State-of-Charge Balancing

Sifeddine Benahmed^{1,2,3}, Pierre Riedinger^{1,2}, Serge Pierfederici^{1,3} ¹ University of Lorraine

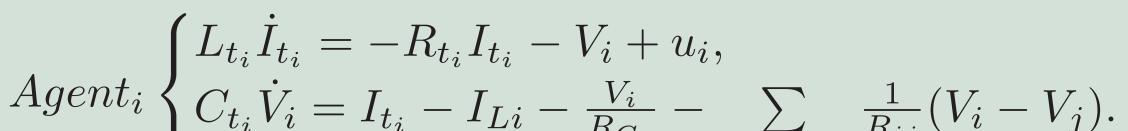
²Centre de Recherche en Automatique de Nancy (CRAN)

³Laboratoire d'Energétique et de Mécanique Théorique et Appliquée (LEMTA)

Introduction


• The goal of this thesis is to develop distributed control scheme for Direct-Current (DC) Microgrids. This latter will ensure several objectives as current sharing, Average Voltage Regulation, and State-of-Charge Balancing, with a proof of global stability.

Motivation


A MicroGrid (MG) is a cluster of several interconnected Distributed Generation Units (DGUs), loads, and energy storage system which coordinate between each-other to reliably provide energy, it can be connected to the main grid or operates independently. MGs have several advantages:

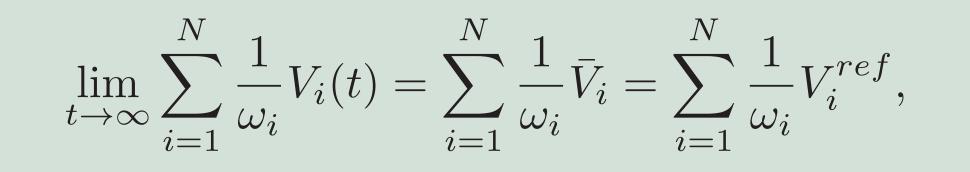
Modelling

A DC-MG composed of N DGUs, m power-lines, and loads is considered; the electrical scheme of a DGU with several power-lines is

-The agent dynamic and the overall model are

- Possibility to provide energy for isolated places.
- Simplify integration of renewable and eco-friendly power generation technologies with almost zero emissions.
- Distributed generation, reliability, etc.

$$MG \begin{cases} L_t \dot{I}_t = -R_t I_t - V + u, \\ C_t \dot{V} = I_t - R_G^{-1} V - \mathcal{L}^{pow} V - I_L. \end{cases}$$


Objectives and Problem formulation

Problem Design a distributed control law u to achieve the considered objectives with a proof of global stability

Objective 1. Current Sharing $(Powerful/Powerless DGU \overset{Consensus}{\Longrightarrow} More/Less provided cur$ rent)

 $\lim_{t \to \infty} \omega_i I_{ti} = \omega_i \overline{I}_{ti} = \omega_j \overline{I}_{tj} \quad \forall i, j \in \mathcal{V},$ where the weight ω_i , $i = 1, \dots, N$ are given parameters.

Objective 2. Average Voltage Regulation

The MG model is augmented with two distributed integrators

 $\Sigma \begin{cases} L_t \dot{I}_t = -R_t I_t - V + \boldsymbol{u}, \\ C_t \dot{V} = I_t - R_G^{-1} V - \mathcal{L}^{pow} V - I_L, \\ \tau_{\phi} \dot{\phi} = W^T \mathcal{L}^{com} W I_t, \end{cases}$ $\tau_{\gamma} \dot{\gamma} = -W^T \mathcal{L}^{com} W \gamma + (V - V^{ref})$

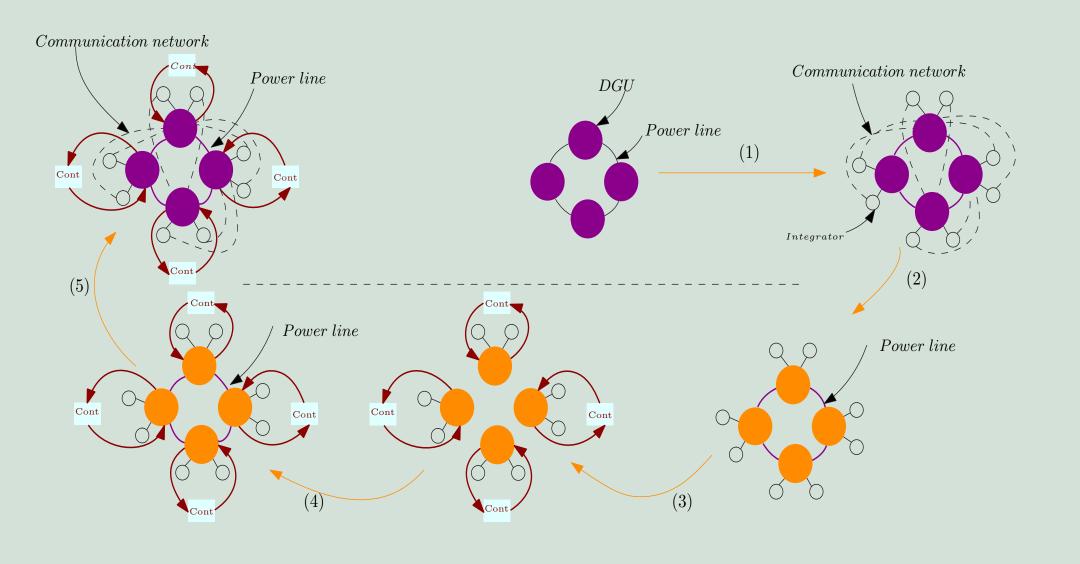
• control law to define • physical network • unknown loads

Despite its advantages Microgrids still have several challenges to overcome as

- Current Sharing.
- Average Voltage Regulation.
- State of Charge Balancing.

To overcome these challenges several control strategies are used, as

Centralized control


Distributed control

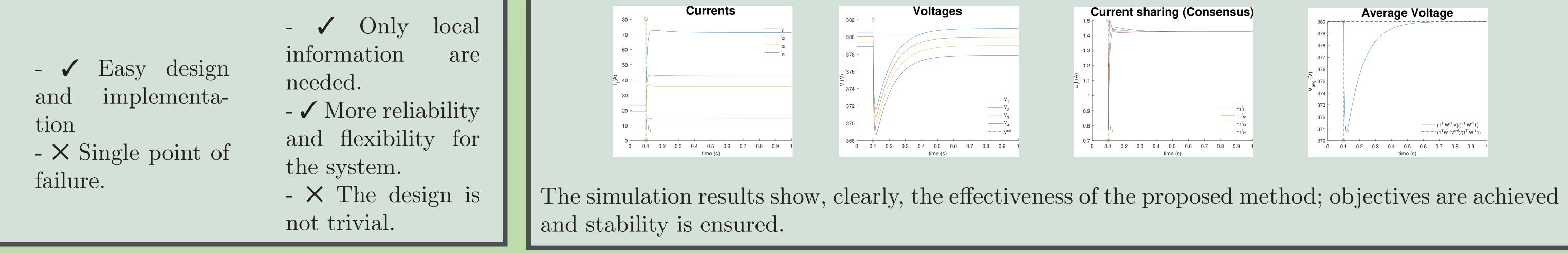
information needed.

with $W = diag(\omega_1, \cdots, \omega_N), \ \omega_i > 0$, for all DGU_i .

• communication network

Distributed Control Design Methodology & Simulation

(1)- Augmented system


(2)- Simplify the coupling by variable transformation

(3)- Design local controllers with passivity conditions

(4)- Using passivity property global stability is proved

(5)- Apply the inverse of the variable transformation and stability is conserved.

Scenario: we consider a MG composed of four DGUs and power-lines. The system is at steady state then at time instant $t = t_1$ an unknown current demand variation occurs.

Conclusion

A distributed-based control, including integral actions to achieve both proportional Current Sharing and Average Voltage Regulation in DC powernetworks has been proposed. The nominal closed-loop system is proven to converge globally to a desired steady-state, independently of the current demand and the initial conditions of the MG. The simulation results clearly show the effectiveness of the control method.

Acknowledgements

This work was supported by the French PIA project «Lorraine Université d'Excellence», reference ANR-15-IDEX-04-LUE and by the ANR under the grant HANDY ANR-18-CE40-0010.