- 65		
	The Topology of Plane Curves	
	Georg UNVERSITÉ Svlvain Lazard, Guillaum	ge Krait ne Moroz and Marc Pouget
V.		
X	Summary <u>Input:</u> curve \mathfrak{C}_n in \mathbb{R}^n given by $f_1(x) = \cdots = f_{n-1}(x) = 0$, $x \in \mathbb{R}^n$ and f_i are infinitely differentiable <u>Goal:</u> Drawing with certified topology the projection \mathfrak{C} of \mathfrak{C}_n in \mathbb{R}^2 Contribution: A certified numerical algorithm to isolate the	Usual way to compute the topology of 2D curves
	singular points* of \mathfrak{C} (main step for drawing that curve)	 a) Isolate the singular points 2) Draw the curve around each singular point Connect the singular points properly
\	*Singular point = point where the curve is not smooth	
	Our approach and it	s difficulties
	Our approach: Isolating the singular points using certified numerical methods: Interval Newton Requirements:	Difficulties: If the curve is given by the equation $f(x, y) = 0$, then the usual system that represents the singular points is $\begin{cases} f(x, y) = 0\\ \frac{\partial f}{\partial x}(x, y) = 0 \end{cases}$ Interval Newton requirements are not satisfied
_	 of equations Regular: the Jacobian matrix of this system is invertible 	$\left(\frac{\partial f}{\partial y}(x,y)=0\right)$
7	We design a system in \mathbb{R}^{2n-1} : (1)	encoding the singularity of 2D curve
	(1)	satisfying interval Newton requirements
Our Assumptions		
	We consider plane curves that are projections of smooth curves in \mathbb{R}^n such that:	
	1) Singular points are only self-intersections and ordinary cusps	2) No more than 2 points in (1) (counted with reality is it.)
X	2) They lift to finite sets in \mathfrak{C}_n	5) No more than 2 points in C_n (counted with multiplicity) have the same projection
ſ	Main results	Applications
	1. Almost all curves in \mathbb{R}^n satisfy these assumptions	
	2. Under these assumptions, there exists a square regular system in \mathbb{R}^{2n-1} that characterizes the singularities of the $2D$ curve	2-degrees-of-freedom robots : Drawing C with certified topology allows us to move the robot without
	3. Semi-algorithm for checking our assumptions: terminates iff the assumptions are satisfied	leaving the region in which the robot is allowed to move. $\begin{array}{c}1\\\\\\-1\\\\-2\end{array}$
1	Future work	projection of
5	Proving that a generic silhouette curve satisfies our assumptionsImplementing the algorithms	its silhouette geometric modeling of the
	• Computing the topology of generic singular surfaces in \mathbb{R}^n	space (\mathbb{R}^2) robot's motion with 2 degrees of freedom
Ţ	References George Krait, Sylvain Lazard, Guillaume Moroz, Marc Pouget. Numerical Algorithm for the Topology of Singular Plane Curves. EuroCG'19	

17