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Motivation

Radar detection of moving scatterers.
Multiharmonic numerical method for solving wave scattering problems with moving
boundaries, where scatterer assumed to move smoothly around equilibrium position.
Starting with one dimensional toy model, we extend the applicability to higher di-
mensions and more general geometries.
Investigate problem in frequency domain, derive how frequency components of the so-
lution must be coupled, compute only ones with significative contributions by solving
coupled systems of Helmholtz- type equations.
Provides alternative method to FFT brute force, which combines both accuracy and
efficiency.
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Fig. 1: Computation of the spectrums of the signal without boundary motion (red) and with boundary motion (blue) of

amplitude 10cm and frequency ν` = 3 Hz. The emitted wave velocity is c = 300 m.s−1, with frequency νf = 360 Hz.

Model

Consider bounded spatial domain Ω(t) ⊂ Rn with boundary ∂Ω(t) = Γ0∪Γ(t) where
Γ(t) is an open moving boundary described by time-dependent smooth and bounded
field `(t). For all x ∈ Ω(t) and t > 0, the unknown total wave field u(x, t) is solution
to

∂ttu− c2∆u = 0. (1)

Consider single source xs ∈ Ω̄(t)\Γ(t) such that u(xs, t) = A sin(2πνft) and u(x, t) =
0 on ∂Ω(t) \ {xs}.
Other boundary conditions are investigated in the work.
For well-posedness: u(x, 0) = 0 and ∂tu(x, 0) = 0.

Reformulation in fixed domain

Detail of the method in case of one dimensional domain Ω(t) := {x : x ∈]0, `(t)[}
with boundary conditions u(`(t), t) = 0 and u(0, t) = A sin(2πνft).

First map Ω(t) with variable size to Ω̃ =]0, L[. As a result, initial scattering problem

writes: find solution ũ(x̃, t) = u(x, t) in Ω̃× R+
∗ of:
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with ũ(0, t) = A sin(2πνft), ũ(L, t) = 0, ũ(x̃, 0) = 0 and

∂tũ(x̃, 0) = − ∂x̃
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Frequency domain method

Time Fourier transform of Eq. (2) writes
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(3)
Assuming periodic and C∞ boundary motion, Fourier transform of fixed domain space variable
is approximated by ̂̃x(x, ξ) '

N∑
n=−N

cx̃,n(x)δnν`.

Furthermore, shown that unknown field ũ writes as sum of Dirac combs of the form

ûνf =
∑
j∈Z

ãj(x̃)δνf+jν`.

Hence, injecting the two last in Eq. (3), obtain the following differential-algebraic coupled system
of Helmholtz-like equations:
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with Π1
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Π3
x̃,n := ncx̃,n and κ` = 2πν`/c. Shown that inner coefficients ãj are of exponential decay

with respect to |j|. Allows to define frequency boundary conditions to previous system.
Below, comparison between computation of spectrum via our method (frequency domain
method, resolution by means of 1 order FEM) and standard space time + FFT brute force
resolution, in case of sine motion `(t) of amplitude ε and frequency ω`.

Fig. 2: c = 300 m.s−1, νf = 360 Hz, ν` = 3 Hz, ε = 0.1 m, x̃ = 0.45 m.

Fig. 3: c = 43 m.s−1, νf = 101 Hz, ν` = 1 Hz, ε = 0.1 m, x̃ = 0.18 m.

Impact of the boundary motion on the
frequency modulation

Description of domain deformation provided by knowledge of Fourier coeffi-
cients of x̃.
Numerically obtained via FFT algorithm, need to be computed only once for
given boundary motion.
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Fig. 4: c = 1080 m.s−1, νf = 3250 Hz, ν` = 1 Hz, x̃ = 0.55 m.

Conclusion

As a frequency domain method, two main advantages:
- allows to define the optimal frequency grid over which the coupled system has
to be solved, frequency step corresponds to fundamental frequency of modu-
lating signal (i.e. boundary motion).
- provides simple criterion to truncate the system in order to keep minimal
number of frequencies that are not negligible. Hence, optimize size of coupled
system to solve without loss of accuracy.
As a consequence, the computationnal costs only depends on the parameter η
and the spatial discretization.

Acknowledgements

I would first like to thank my thesis supervisors Prof. ANTOINE Xavier of the
University of Lorraine and Prof. GEUZAINE Christophe from the University
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