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Figure: Sound scene in a typical home
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Figure: Time-Frequency representation of speech

I Mixture contains speech from two speakers and noise

I Typically happens in devices such as Alexa and Google Home

I Interested only in the speaker interacting the device

I Recover speech using speaker location information

I Two step process:

. Estimate speaker location using known keyword

. Using the location information to extract the interested speech
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Figure: Flow to estimate the speaker location

I Assumes knowledge of keyword like Alexa, Ok Google

I Words can be broken into phones. Example Alexa: AH L EH K S AH

I Phones has patterns. Use pattern to improve localization
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Figure: Average spectra of phones

SPEECH SEPARATION USING LOCATION INFORMATION
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Figure: Speech separation using localization information

I Use the location information to electronically steer towards the speaker

I Extract features to estimate a mask

I Use mask along with beamformers to extract the speaker

Figure: Estimated speech

RESULTS
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Figure: Localization results

∆ DOA <10◦ >50◦ Average
Beamformers True DOA Est DOA True DOA Est DOA True DOA Est DOA
GEV 38.0 54.5 30.2 41.5 30.9 43.2
R1-MWF 37.4 53.9 28.8 40.4 29.4 42.4
SDW 36.6 54.0 29.0 40.9 29.6 42.4

Table: Word error rate(%) on noisy two-speaker mixtures after separation using ground truth or
estimated speaker location information (Using GCC-PHAT).

CONCLUSION

I Knowledge of text improves localization performance

I Can use localization information to improve separation performance

I Extended this approach to estimate speakers using deflation strategy
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