Well-Posedness of The Dirichlet Problem for Two TANGENT SPHERES

Rémi Côme

IECL, Université de Lorraine (advisor: Victor Nistor)

Setting of the problem

Consider the domain Ω given by the inclusion of a three-dimensional ball inside annother: The Dirichlet problem is stated as follows: find the solution u to

$$
\begin{cases}\Delta u=f & \text { on } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

for a given data $f \in C^{\infty}(\Omega)$. Here $\Delta=-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}-\frac{\partial^{2}}{\partial z^{2}}$.

Definition

Let $\mathcal{H}, \mathcal{H}^{\prime}$ be normed vector spaces containing $C^{\infty}(\Omega)$. The problem (D) is well-posed from \mathcal{H} to \mathcal{H}^{\prime} if, for any $f \in \mathcal{H}^{\prime}$, there is a unique $u \in \mathcal{H}$ solving (D), together with a stability estimate
$\|u\| \leq C\|f\|$.
The problem (D) is essentially well-posed if it is well-posed up to some finite dimensional vector spaces.

The contact point is a singularity.

Question: can we find function spaces $\mathcal{H}, \mathcal{H}^{\prime}$ such that the problem (D) is well-posed from \mathcal{H} to \mathcal{H} '?

Context

Classical results

On a bounded, smooth domain $\Omega \subset \mathbb{R}^{n}$, the Dirichlet problem is known to be well-posed between Sobolev spaces. For $m \in \mathbb{N}$, define

$$
H^{m}(\Omega)=\left\{v: \Omega \rightarrow \mathbb{C} \mid \partial^{\alpha} v \in L^{2}(\Omega), \text { for all }|\alpha| \leq m\right\}
$$

Then (D) is essentially well-posed from $H^{2}(\Omega)$ to $L^{2}(\Omega)$.

Loss of regularity and convergence of numerical schemes

An important feature of the presence of singularities is the loss of regularity for the solutions. If $f \in L^{2}(\Omega)$ and u is a solution to (D), then we don't necessarily have $u \in H^{2}(\Omega)$. A consequence is that the usual numerical methods to approximate u (e.g. finite element methods) have a sub-optimal convergence.

Two dimensions

In two dimensions, i.e. for two tangent disks in \mathbb{R}^{2}, the problem is essentially well-posed between weighted Sobolev spaces. For $m \in \mathbb{N}$ and $a, b \in \mathbb{R}$, define

$$
\mathcal{K}_{a, b}^{m}(\Omega)=\left\{v: \Omega \rightarrow \mathbb{C} \mid r^{2(b-|\alpha|)} \partial^{\alpha}\left(e^{a / r} v\right) \in L^{2}(\Omega), \text { for all }|\alpha| \leq m\right\}
$$

with r the distance to the singular point.
Theorem (Schulze-Sternin-Shatalov 98, Kozlov-Maz'ya-Rossmann 97): Let ρ_{s} be the radius of the small disk and ρ_{b} the radius of the big one. Set

$$
A:=\frac{1}{2}\left(\frac{1}{\rho_{s}}-\frac{1}{\rho_{b}}\right)
$$

Then for any $|a|<A$, the problem (D) is essentially well-posed from $\mathcal{K}_{a, 3}^{2}(\Omega)$ to $\mathcal{K}_{a, 1}^{0}(\Omega)$.

Blowing up the singularity

A typical approach is to perform a change of variable near the singularity to obtain a blown-up space $\Sigma(\Omega)$:

The singularity is replaced by a cylinder. Vertical lines are highlighted.

Limit problems

The blown-up space $\Sigma(\Omega)$ is used to construct an algebra of operators with a prescribed behavior near the singularity.
A careful study of the representations of this algebra shows that the well-posedness of the Dirichlet problem (D) is controlled by a family of limit problems on the vertical lines on the blown-up space.

Theorem (C. 2019): For any $a, b \in \mathbb{R}$, the Dirichlet problem (D) is essentially well-posed from $\mathcal{K}_{a, b+2}^{2}(\Omega)$ to $\mathcal{K}_{a, b}^{2}(\Omega)$ if, and only if, all the limit problems

$$
\left\{\begin{array}{l}
v^{\prime \prime}-(i \xi+a)^{2}+\eta^{2}=g \\
v(0)=v(1)=0
\end{array}\right.
$$

$$
\left(L_{\xi, \eta}\right)
$$

on $[0,1]$, indexed by $(\xi, \eta) \in \mathbb{R}^{2}$, are well-posed from $H^{2}(0,1)$ to $L^{2}(0,1)$.

Conclusions

Results

The above theorem may be used to obtain a well-posedness result for the 3D problem:
Theorem (C. 2019): There is an $A>0$ such that, for all $|a|<A$ and $b \in \mathbb{R}$, the problem (D) is essentially well-posed from $\mathcal{K}_{a, b+2}^{2}(\Omega)$ to $\mathcal{K}_{a, b}^{0}(\Omega)$. Moreover, we have

$$
A=\frac{1}{2}\left(\frac{1}{\rho_{s}}-\frac{1}{\rho_{b}}\right)
$$

with ρ_{s} the radius of the small ball and ρ_{b} the radius of the big one.
The result is quite general. It applies to:

1. More general geometries: for instance cusps given by $r \mapsto r^{\gamma}$, for any $\gamma>1$,
2. Other boundary conditions such as mixed Dirichlet/Neumann.

Further work

Problem: the pure Neumann problem, given by

$$
\begin{cases}\Delta u=f & \text { on } \Omega \tag{N}\\ \partial_{\nu} u=0 & \text { on } \partial \Omega,\end{cases}
$$

is equally interesting, but much harder: in that case, the limit problems ($L_{\xi, \eta}$) are never all simultaneously well-posed, no matter the value of the weight a.
A current goal is to use operator algebraic methods to refine the limit problems to subspaces of our weighted spaces. This should yield a well-posedness result on a sum of weighted spaces, with different weights on each component.

