Well-posedness of the Dirichlet problem for two Tangent Spheres

Rémi Côme IECL, Université de Lorraine (advisor: Victor Nistor)

Setting of the problem

Consider the domain Ω given by the inclusion of a three-dimensional ball inside annother:

The *Dirichlet problem* is stated as follows: find the solution u to

 $\begin{cases} \Delta u = f & \text{on } \Omega \\ u = 0 & \text{on } \partial \Omega, \end{cases}$ for a given data $f \in C^{\infty}(\Omega)$. Here $\Delta = -\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2}.$

Definition

Let $\mathcal{H}, \mathcal{H}'$ be normed vector spaces containing $C^{\infty}(\Omega)$. The problem (D) is *well-posed* from

The contact point is a *singularity*.

 \mathcal{H} to \mathcal{H}' if, for any $f \in \mathcal{H}'$, there is a unique $u \in \mathcal{H}$ solving (D), together with a stability estimate

 $\|u\| \le C\|f\|.$

The problem (D) is *essentially well-posed* if it is well-posed up to some finite dimensional vector spaces.

Question: can we find function spaces $\mathcal{H}, \mathcal{H}'$ such that the problem (D) is well-posed from \mathcal{H} to \mathcal{H}' ?

Context

Classical results	Two dimensions
On a bounded, smooth domain $\Omega \subset \mathbb{R}^n$, the Dirichlet problem is known to be well-posed between Sobolev spaces. For $m \in \mathbb{N}$, define $H^m(\Omega) = \{v : \Omega \to \mathbb{C} \mid \partial^{\alpha} v \in L^2(\Omega), \text{ for all } \alpha \leq m\}.$ Then (D) is essentially well-posed from $H^2(\Omega)$ to $L^2(\Omega)$.	In two dimensions, i.e. for two tangent disks in \mathbb{R}^2 , the problem is essentially well-posed between <i>weighted</i> Sobolev spaces. For $m \in \mathbb{N}$ and $a, b \in \mathbb{R}$, define $\mathcal{K}^m_{a,b}(\Omega) = \{v : \Omega \to \mathbb{C} \mid r^{2(b- \alpha)} \partial^{\alpha}(e^{a/r}v) \in L^2(\Omega), \text{ for all } \alpha \leq m\},\$ with r the distance to the singular point.
Loss of regularity and convergence of numerical schemes	Theorem (Schulze-Sternin-Shatalov 98, Kozlov-Maz'ya-Rossmann 97):

An important feature of the presence of singularities is the loss of regularity for the solutions. If $f \in L^2(\Omega)$ and u is a solution to (D), then we don't necessarily have $u \in H^2(\Omega)$. A consequence is that the usual numerical methods to approximate u (e.g. finite element methods) have a sub-optimal convergence. Let p_s be the factors of the small disk and p_b the factors of the big one. Set

$$:=\frac{1}{2}\left(\frac{1}{\rho_s}-\frac{1}{\rho_b}\right),$$

Then for any |a| < A, the problem (D) is essentially well-posed from $\mathcal{K}^2_{a,3}(\Omega)$ to $\mathcal{K}^0_{a,1}(\Omega)$.

Blowing up the singularity

A typical approach is to perform a change of variable near the singularity to obtain a blown-up space $\Sigma(\Omega)$:

The singularity is replaced by a cylinder. **Vertical lines** are highlighted.

Limit problems

The blown-up space $\Sigma(\Omega)$ is used to construct an algebra of operators with a prescribed behavior near the singularity.

A careful study of the representations of this algebra shows that the well-posedness of the Dirichlet problem (D) is controlled by a family of *limit problems* on the **vertical lines** on the blown-up space.

Theorem (C. 2019): For any $a, b \in \mathbb{R}$, the Dirichlet problem (D) is essentially well-posed from $\mathcal{K}^2_{a,b+2}(\Omega)$ to $\mathcal{K}^2_{a,b}(\Omega)$ if, and only if, all the limit problems $\begin{cases} v'' - (i\xi + a)^2 + \eta^2 = g\\ v(0) = v(1) = 0. \end{cases}$ $(L_{\xi,\eta})$

on [0, 1], indexed by $(\xi, \eta) \in \mathbb{R}^2$, are well-posed from $H^2(0, 1)$ to $L^2(0, 1)$.

Conclusions

Results

The above theorem may be used to obtain a well-posedness result for the 3D problem:

Theorem (C. 2019): There is an A > 0 such that, for all |a| < A and $b \in \mathbb{R}$, the problem (D) is essentially well-posed from $\mathcal{K}^2_{a,b+2}(\Omega)$ to $\mathcal{K}^0_{a,b}(\Omega)$. Moreover, we have

 $A = \frac{1}{2} \left(\frac{1}{\rho_a} - \frac{1}{\rho_b} \right),$

with ρ_s the radius of the small ball and ρ_b the radius of the big one.

The result is quite general. It applies to:

1. More general geometries: for instance cusps given by $r \mapsto r^{\gamma}$, for any $\gamma > 1$,

2. Other boundary conditions such as mixed Dirichlet/Neumann.

Further work

Problem: the pure Neumann problem, given by

 $\begin{cases} \Delta u = f & \text{on } \Omega \\ \partial_{\nu} u = 0 & \text{on } \partial \Omega, \end{cases}$

is equally interesting, but much harder: in that case, the limit problems $(L_{\xi,\eta})$ are *never* all simultaneously well-posed, no matter the value of the weight a. A current goal is to use operator algebraic methods to refine the limit problems to subspaces of our weighted spaces. This should yield a well-posedness result on a sum of weighted spaces, with different weights on each component.

(N)

(D)