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Wepropose new results on input-to-state stability (ISS) sub-
ject to time delays in the input for compact, invariant sets
that contain the origin. First, using nonlinear small-gain the-
ory, we prove a Razumikhin-type theorem that ensures ISS
for sets in the context of functional differential equations
(FDEs) with delayed disturbances. Next we demonstrate
that this theorem can be used to ensure set ISS for nonlin-
ear systems with input delays and disturbances. In compar-
ison to the existing research on robustness of set ISS with
respect to time delays at the input, our results aremore gen-
eral, retain the ISS gain, and do not impose constraints on
time delayed states. The advantages of themethod are illus-
trated through two case-studies on set-stability for classes
of nonlinear oscillators of practical interest.
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1 | INTRODUCTION
Time delays are ubiquitous inmodern control applications. These delays can be attributed to the presence of communi-
cation networks between sensors, plants, and controllers. Delayed states can also be found in a variety of engineering
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systems that don’t involve communication networks (arising from discretization, quantization, and processing limita-
tions), such as advanced defense systems, rolling mills, automotive engines, chemical and biological reactors [1, 2, 3].

It is well established that time delay systems (TDS) are a class of infinite-dimensional FDEs. TDS stability analysis
methods can be structured into frequency-domain [4], [5], and time-domain ones. The time-domain methods extend
the Lyapunov approach and are based either on Lyapunov-Krasovskii functionals [6] or on the Lyapunov-Razumikhin
function [7]. Detailed descriptions of these methods and their applications can be found in [8], [9]. Stability analysis
of linear TDS based on linear matrix inequalities (LMI) and Lyapunov-Krasovskii functionals can be found in [10], [11]
and references therein. While the Lyapunov-Krasovskii technique is a logical extension of the Lyapunov approach, the
choice of a Lyapunov-Krasovskii functional remains a complicated problem. In many nonlinear scenarios, it is easier
to determine a Lyapunov-Razumikhin function (see, for instance, [12] and [13]). The rest of this article will, therefore,
focus on using the Lyapunov-Razumikhin technique to develop robustness results under time delay.

The concept of ISS was first put forth as a theoretical foundation for the investigation of robustness to external
disturbances in [14], andmany researchers have since used it in a variety of contexts, from robust control [15] to highly
nonlinear small-gain theorems [16]. For FDEs with disturbances, ISS is guaranteed by Razumikhin-type theorems,
which were proposed in [17]. The author in [17] also demonstrated that ISS is robust to input time delays.

The ISS property, along with fundamental stability notions, was initially defined with regard to a specific equilib-
rium state of interest. However, convergence to sets has become critical in modern control applications, and therefore
set ISS has become prevalent. Several robust stability problems in areas such as incremental stability, leader-follower
consensus, consensus tracking, synchronization of oscillators are covered under a more comprehensive framework
of ISS with respect to a closed set in [18], compact set in [19, 20, 21, 22]. Seminal articles on set ISS for closed sets
include [23], [24] where various notions of set-ISS and Lyapunov characterizations of the same are introduced. Spe-
cializations of set ISS notions for compact invariant sets are shown in [25]. The study of the ISS property with respect
to a compact set that comprises the origin is a common application of IOS, as stated in [26]. The distance between the
states and the set is the output when applying IOS in these instances. However, in order to investigate the robustness
of set ISS to time delay, we concentrate on set ISS rather than IOS notions.

The focus of the current article is the robustness of set ISS to input time delays, which is not covered in the
aforementioned literature. Time delays naturally lead to FDE, and the various notions of stability of invariant sets for
FDEs are introduced in [27]. The authors in [28] provide a Razumikhin-type characterization of set ISS for FDEs in
their work. To the best of the author’s knowledge, the only rigorous result guaranteeing set ISS for a class of nonlinear
systems in the presence of time delay at the input is [28]. However, both the Razumikhin-type theorem and robustness
of set ISS to time delay results have conditions (such as the additive nature of the time delay and a constraint on the
additive delay term) restricting their general applicability. Our focus primarily is to improve both these results and
significantly expand the scope of application of the Razumikhin based robustness results on set ISS.

The article’s novel contributions in comparison to the body of literature are listed below.
1. We present a novel variant of the Razumikhin theorem for set ISS of FDEs along with proof.
2. We propose an innovative result on the robustness of set ISS to delays using the new variant of the Razumikhin

theorem developed here.
3. It is demonstrated that the robustness results proposed here are more generally applicable and relax some of the

conditions required in [28]. Unlike [28] our results are also applicable to non-additive time delays at the input.

The remainder of the paper is set out as follows. The relevant notations, definitions, and theorems are provided in
Section 2. The proofs of the set-versions of the Razumikhin-type theorem, ISS, and the major finding of the paper on
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the robustness of the set ISS to time delays at the input, are all illustrated in Section 3. We also compare the findings
of our robustness study to those in the article [28], which is well illustrated using examples in Section 4. The future
road map is presented in Section 5 of our study.

2 | PRELIMINARIES
This section aims to introduce some results that help us prove the robustness of set ISS to time delays at the input.

A mapping γ : Ò>0 → Ò>0 is said to belong to class-G if it is continuous, zero at zero and non-decreasing; it is
of class-K if it is of class-G and strictly increasing; it is of class-K∞ if it is of class-K and unbounded. A continuous
function β : Ò>0 × Ò>0 → Ò>0 is said to be of class-KL if β ( ·, t ) is of class-K for each t > 0 and β (s, ·) is mono-
tonically decreasing to zero for each s > 0. Throughout the paper, the following standard notations are used: set
C = C( [−δ, 0],Òn ) represent continuous functions mapping the interval [−δ, 0] into Òn , with the topology of uni-
form convergence and some δ > 0. At the time t , the vector is x (t ) , and for the sake of simplicity, when no confusion
can arise, we will denote it just by x . The state history function xt corresponds to the past time-interval [t − δ, t ],
where xt (θ) = x (t + θ) , where θ ∈ [−δ, 0].

2.1 | Set-stability for systems without time delay
We start by recalling some standard definitions/notations for non delayed nonlinear systems. The readers familiar with
these notions can skip this section and go directly to the next one that addresses set-stability for time delay systems.
These definitions make the article self-content and will be important in establishing our main findings regarding the
set ISS’s robustness to systems with time delays in feedback.

Consider nonlinear systems of the following form
¤x (t ) = f (x (t ),u (t )), (1)

where x (t ) ∈ Òn , u (t ) ∈ Òm , [t > 0, and the map f : Òn ×Òm → Òn is Lipschitz on bounded sets [29]. The input u is
measurable, locally essentially bounded function of the type u : Ò>0 → Òm . The space of such functions is denoted
by Lm∞ with the norm ‖u [t0,∞) ‖ , ess sup{u (t ) : t > t0 > 0}. The space Lm∞ consists of functions which are bounded
almost everywhere. We use ‖u ‖ = |u [0,∞) | and let ‖u [0,t ] ‖ be the signal norm over the truncated interval [0, t ]. For
each initial x0 = x (0) ∈ Òn and each u ∈ Lm∞ , let x (t , x0,u) denote the solution of (1) at time t . If there is no ambiguity
from the context, the solution is simply written as x (t ) .

For a nonempty closed set A ∈ Òn we have, |y |A , inf{d (y , z ) : z ∈ A} where d (y , z ) = |y − z |.
Definition 1 (Finite escape time[25]) The system (1) is finite escape-time detectable through | · |A if a solution’s maximal
interval of existence is bounded, i.e., x (t ) is defined exclusively on [0,T ) withT finite, then lim

t→T
|x (t ) |A = ∞.

Definition 2 (Invariant set w.r.t ODE [25]) For the associated “zero-input" system

¤x (t ) = f (x (t ), 0),

set A is said to be a 0-invariant set if it holds that for any x0 ∈ A, x (t , x0, 0) ∈ A for all t > 0.

The rest of the document will refer to the 0-invariant set as the invariant set.
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Definition 3 (Set ISS using ISS-Lyapunov function w.r.t. sets [30]) A smooth ISS-Lyapunov functionV : Òn → Ò>0 for
(1) with respect to the closed set A is a function that satisfies

1. there exists α1, α2 ∈ K∞ such that for any x ∈ Òn ,

α1 ( |x |A) 6 V (x ) 6 α2 ( |x |A) .

2. there exist α3 ∈ K and χ ∈ K∞ such that for all x ∈ Òn and u ∈ Òm ,

|x |A > χ ( |u |) =⇒
∂V (x )
∂x

f (x ,u) 6 −α3 ( |x |A) . (2)
The ISS gain in this scenario is given by α−11 ◦ α2 ◦ χ . For compact set A, an equivalent representation of (2) is:

3. there exists α3, α4 ∈ K∞ such that for all x ∈ Òn and u ∈ Òm ,

∂V (x )
∂x

f (x ,u) 6 −α3 ( |x |A) + α4 ( |u |) .

Assume the closed setA is invariant for (1). The system (1) is ISSwith respect toA if it admits a smooth ISS-Lyapunov function
with respect to A (see [31] ) and is finite escape-time detectable through | · |A .

In order to take into account a system in which we have control inputs and disturbances, we can formulate the follow-
ing ISS property:

¤x (t ) = φ (x (t ),u1 (t ),u2 (t )) (3)
where x (t ) ∈ Òn denotes the vector of state variables, u1 (t ) ∈ Òp is the controlled input , u2 (t ) ∈ Òm denote the
vector of uncontrolled disturbances, and φ is Lipschitz on bounded sets on Òn ×Òp ×Òm .
Definition 4 (Set ISS for two input ODE) System (3) is set ISS if there exists γu1 , γu2 ∈ K , β ′ ∈ KL such that for each
x (0) ∈ Òn and for each pair of measurable, essentially bounded inputs u1 ( ·),u2 ( ·) , the solution of (3) with x (0) = x0 exists
for all t ≥ 0 and the following inequality holds:

|x (t ) |A ≤ β ′ ( |x0 |)A, t ) + γu1 ( | |u1 | |) + γu2 ( | |u2 | |) . (4)

Lemma 1 (Set ISS for two input ODE using ISS-Lyapunov function w.r.t sets) The system in (3) is said to be set ISS with
gain (γu1 , γu2 ) with two functions γu1 ∈ K and γu2 ∈ K , if there exists a smooth functionV : Òn → Ò≥0, three functions
α1, α2, α3 ∈ K∞ and two functions γ̃u1 , γ̃u2 ∈ K with γu1 (e) = α−11 (α2 (γ̃u1 (e))) , γu2 (e) = α

−1
1 (α2 (γ̃u2 (e))) such that for

all x (t ) ∈ Òn , all u1 ∈ Òp , all u2 ∈ Òm and all e ≥ 0:

1. α1 ( |x |A) 6 V (x ) 6 α2 ( |x |A)
2. |x |A > max{γ̃u1 ( |u1 |), γ̃u2 ( |u2 |) } =⇒ ∂V

∂x φ (x ,u1,u2) 6 −α3 ( |x |A),

Note that the proposition above is an extension of [32, Definition 1] to sets.
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Proof From the hypothesis of the Lemma 1 in [17] or Proposition 2.1, for system (3 with ISS-Lyapunov function
satisfying the two conditions of Lemma 1, there exists a KL function β ′ = max{α−11 (β ( |x (0) |A, 0)) } with β ∈ KLsuch that for each pair of measurable, essentially bounded inputs u1 ( ·),u2 ( ·) , the solution of (3) with x (0) = x0 exists
for all t ≥ 0 and satisfies

|x (t ) |A ≤ β ′ ( |x0 |)A, t ) + α−11 (α2 (max{γ̃u1 ( | |u1 | |), γ̃u2 ( | |u2 | |) })) .
From the fact that for any pair of nonnegative real numbers (c1, c2)

α−11 (α2 (max{c1, c2 })) ≤ max{α−11 (α2 (c1)), α−11 (α2 (c2)) }
≤ α−11 (α2 (c1)) + α

−1
1 (α2 (c2)) .

We obtain
|x (t ) |A ≤ β ′ ( |x0 |)A, t ) + γu1 ( | |u1 | |) + γu2 ( | |u2 | |)

with γu1 = α−11 (α2 (γ̃u1 )) , γu2 = α−11 (α2 (γ̃u2 )) .

2.2 | Set-stability for systems with time delay
The notions of set-stability for systems with time delays and disturbances are introduced in this subsection. Consider
the autonomous TDS with no perturbations,

¤x (t ) = f (xt ), x0 = φ∈ C, (5)
where f : C → Òn is Lipschitz on bounded sets and φ : [−δ, 0] ↦→ Òn is the initial condition. The vector x (t ) is the
solution at time t while xt is the state history in TDS (5).
Definition 5 (Invariant set w.r.t FDE) A set A ⊆ C is said to be an invariant set (with respect to (5)) if for any φ in A, there
is a solution x ( ·) of (5) that is defined on [0,∞) such that xt ∈ A, [t ≥ 0.
We further introduce FDEs with delayed disturbances and some notations related to the same as given in [17]. We
analyze FDEs of the form,

¤x (t ) = f (xt ,wt ), x0 = ξ ∈ C, (6)
where x : C → Òn and the initial data is continuous. w takes values in Òm and is measurable and locally essentially
bounded [33]. The signalw is an exogenous input. We assume that there existsTf > 0 and an uniquemaximal solution
x ( ·) defined on [t0 − δ, t0 +Tf ) for each initial data, input, and starting time t0 > 0. We are allowed to useTf = +∞ in
further calculations. The norms are defined as follows

|xt | , max
−δ6s60

|x (t + s) |, ‖x ‖t0 , sup
t≥t0
|xt |.

The definition of norms with regard to other variables is similar as well. Given continuous functions x : [−δ,∞) → Òn
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and V : [−δ,∞) × Òn → Ò>0, we are using the shorthand V (t , x (t )) , V (t ) and define Vt (τ) , V (t − τ) for
t > 0 and τ ∈ [0, δ ]. Additionally, the upper right hand derivative of V along the solution of (6), x (t ) is defined as
D+V (t ) = lim sup

h→0+
V (t + h) −V (t )

h
.

To conclude this section, we present an instrumental lemma and introduce a final relevant definition.
Proposition 2.1 (Lemma 1 in [17]) Let ξ̃ > 0 and α ∈ K . If V (t ) > ξ̃ implies D+V (t ) 6 −α (V (t )) , then there exists
β ∈ KL (independent of ξ̃) with β (s, 0) > s , such thatV (t ) 6 max{β (V (t0), t − t0), ξ̃ }.
A compact, invariant set A ⊂ Òn that contains the origin serves as the cornerstone for the entire discussion in the
article. The norms w.r.t set A are defined as follows

|xt |A , inf
k ∈A

max
−δ6s60

|k − x (t + s) |,

| |xt | |A , max
−δ6s60

|x (t + s) |A = max
−δ6s60

inf
k ∈A
|k − x (t + s) |,

‖x ‖t0,A = sup
t>t0

{ |xt |A }.

We also have ‖xt ‖A 6 |xt |A (under the assumption that the system has no finite escape time through | · |A) [34].
Invariant set w.r.t (6) is similar to that in Definition 5 with wt = 0 in (6).

The following definition is the set-modified version of [17, Definition 1].
Definition 6 Let γ ∈ G, µ ∈ Ò>0, and ∆x ,∆w ∈ Ò>0 ∪ ∞. A set A (compact, invariant, and contains origin) with respect
to (6) is said to be uniformly ISS with gain γ [and offset µ and restriction (∆x ,∆w )] if |x0 |A < ∆x and ‖w ‖t0 < ∆w imply
Tf = ∞ and that the following properties hold uniformly in t0 > 0

1. for each ε > 0 there exists δ > 0 such that |x0 |A 6 δ implies ‖x ‖t0,A 6 max{ε, γ ( ‖w ‖t0 ), µ } and,
2. for each ε > 0, ηx ∈ (0,∆x ), ηw ∈ (0,∆w ) there existsT > 0 such that |x0 |A 6 ηx and ‖w ‖t0 6 ηw imply ‖x ‖ (t0+T ) ,A 6max{ε, γ ( ‖w ‖t0 ), µ }.
This forms the standard definition of uniform asymptotic stability for the set A of the FDEs for µ = 0 and w (t ) ≡ 0. It
can be proved with the help of [27, Definition 2.6]. Note that Definition 6 imposes bounds on the perturbations and
in this sense indeed refers to local properties. On the other hand the input to state stability is ensured for the same
set of initial conditions as for the system without delays.

3 | MAIN RESULTS
3.1 | Set ISS versions of the Razumikhin-type theorem
In this subsection, we present the set-ISS theorems based on Lyapunov-Razumikhin functions.

The following result is a slight reformulation of the global set ISS version of the Razumikhin-type theorem in [28].
Theorem 3.1 [28] If there exist α1, α2 ∈ K∞, a continuous functionV : [−δ,∞) × Òn → Ò>0, γv , γw ∈ G and α3 ∈ K
such that

1. α1 ( |x (t ) |A) 6 V (t ) 6 α2 ( |x (t ) |A) ,
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2. V (t ) > max{γv ( |Vt |), γw ( |wt |) } =⇒ D+V (t ) 6 −α3 ( |x (t ) |A) ,
3. γv (e) < e for e > 0,

then the set A for (6) is uniformly globally ISS with gain α−11 ◦ γw .
The next version follows from a small-gain argument working with ‖xt ‖A rather than |Vt |A . More significantly, it
addresses the case where the small-gain condition does not hold on all of (0,∞) . This situation will arise in our
upcoming results on the robustness of the input-to-state stability of sets due to time delays at the input.
Theorem 3.2 Suppose there exists α1, α2 ∈ K∞, a continuous functionV : [−δ,∞) ×Òn → Ò>0, γv , γw ∈ G and α3 ∈ K ,
and non negative real numbers µ,∆ with µ < ∆ such that

1. α1 ( |x (t ) |A) 6 V (t ) 6 α2 ( |x (t ) |A) ,
2. |x (t ) |A > max{γx ( |xt |A), γw ( |wt |) } =⇒ D+V (t ) 6 −α3 ( |x (t ) |A) ,
3. α−11 ◦ α2 ◦ γx (e) < e for µ < e < ∆.

Let β ∈ KL be as in conclusion of Proposition 2.1 when α = α3 ◦ α−12 . Then the set A for (6) is uniformly ISS with gain
γ̃w , α

−1
1 ◦ α2 ◦ γw (offset µ and restriction (∆x ,∆w )) such that max{α−11 (β (α2 (s1), 0)), γ̃w (s2) } < ∆ when s1 < ∆x ,

s2 < ∆w .

Proof In this case, the pertinent inequalities are
|xt |A 6 max{ |x0 |A .φ (t − t0), |x |t0,A }, (7)
|x (t ) |A 6 max{β̃ ( |x (t0) |A, t − t0), γ̃x ( | |x ‖t0,A), γ̃w ( ‖w ‖t0 ) }, (8)

where, φ (s) = 0.5(1 − sgn (s − δ)) , |x |t0,A = sup
t>t0

|x (t ) |A , β̃ (e, t ) = α−11 (β (α2 (e), t ) , γ̃x = α−11 ◦ α2 ◦ γx , and γ̃w =

α−11 ◦ α2 ◦ γw . Inequality (8) follows by modifying Point 2) of the theorem, i.e., if V (t ) > α2 (ξ) implies |x |A > ξ.
Thus, in accordance with the theorem’s Point 2), we will obtain V (t ) > max{α2 ◦ γx ( |xt |A), α2 ◦ γw ( |wt |) } =⇒
D+V (t ) 6 −α3 ◦ α−12 ( |V (t ) |) . We use Proposition 2.1 (which introduces a β ∈ KL function) and Point 1) of the
theorem to obtain

V (t ) 6 max{β (V (t0), t − t0), α2 ◦ γx ( |xt |A), α2 ◦ γw ( |wt |) }
=⇒ |x (t ) |A 6 max{β̃ ( |x0 |A, 0), γ̃x ( | |x ‖t0,A), γ̃w ( ‖w ‖t0 ) }.

We here make use of the fact that |x (t0) |A 6 ‖x0 ‖A 6 |x0 |A . Using max{α−11 (β (α2 (s1), 0)), γ̃w (s2) } < ∆ when
s1 < ∆x , s2 < ∆w , guarantees |x0 |A < ∆. We have α−11 (β (α2 (s1), 0)) < ∆ when s1 < ∆x . For s1 = |x0 |A , we have
α−11 (β (α2 ( |x0 |A), 0)) < ∆ and,

α2 ( |x0 |A) 6 β (α2 ( |x0 |A), 0),

α1 ( |x0 |A) 6 α2 ( |x0 |A) 6 β (α2 ( |x0 |A), 0) .

The existence of the aforementioned truncation guarantees |xt |A < ∆, and ‖x ‖t0,A < ∆. Taking sup norm on both
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sides of (7) and (8) and substituting the bound of ‖x ‖t0,A in (8), we obtain
‖x ‖t0,A 6 max{β̃ ( ( |x (t0) |A), 0), µ, γ̃w ( ‖w ‖t0 ) }. (9)

Following Point 3) of the theorem, we can deduce that for a, b, c ∈ [0,∆) , a 6 max{b, γ̃x (a), c } imply a 6 max{b, µ, c }.
Moreover, we are aware that γ̃w (s2) < ∆. Thus, the first condition of the Definition 6 holds if |x0 |A 6 δ , for ev-
ery ε > 0, \ a δ > 0 such that β̃ (δ, 0) 6 (ε) . From (9) we have, ‖x ‖t0,A 6 max{β̃ ( ( |x0 |A), 0), µ, γ̃w ( ‖w ‖t0 ) } and,
‖x ‖t0,A 6 max{ε, γ̃w ( ‖w ‖t0 ), µ }.
In order to demonstrate uniform convergence, we follow a similar procedure to that used in Theorem 3.1. For given
strictly positive real values ε, ηx , ηw , let κ = max{β̃ (ηx , 0), γ̃w (ηw ), µ }, where |x0 |A 6 ηx and ‖w ‖t0 6 ηw to obtain
‖x ‖t0,A 6 κ. Let ρ2 > 0 be such that β̃ (κ, ρ2) 6 (ε) . Also let ρ1 > µ. Using (7) and (8), we can then generate

‖x ‖ (t0+ρ1+ρ2 ) ,A 6 ‖x ‖ (t0+ρ2 ) ,A 6 max{ε, γ̃x ( | |x ‖t0,A), γ̃w ( ‖w ‖t0 ) }.
Since γ̃x (e) < e for all µ < e < ∆, there exists n (κ, ε) such that γ̃nx (κ) 6 max{ε, γ̃w ( ‖w ‖t0 ), µ }. We may therefore
deduce that

‖x ‖ (t0+n (ρ1+ρ2 ) ) ,A 6 max{ε, γ̃w ( ‖w ‖t0 ), µ }.
Thereby, we demonstrate that the second condition of the Definition 6 also holds here and set A for (6) is uniformly
ISS with gain γ̃w [offset µ and restriction (∆x ,∆w )]. �

Remark 3.1 In contrast to Theorem 3.1 from [28], which employs |Vt |A , Theorem 3.2 is a novel variation of Razumikhin-
type theorems for set ISS of FDEs with delayed disturbances. It is based on a small-gain argument using ‖xt ‖A . The uniform
stability and convergence property, as stated in Definition 6, provides a basis for the proof of Theorem 3.2. The offset and
restriction conditions in set ISS are also addressed in Theorem 3.2, as opposed to Theorem 3.1. Our main finding concerning
the robustness of set ISS to a feedback delay is based on Theorem 3.1, making it applicable to systems of a broader class.

3.2 | Set input-to-state stability
Next, we state a lemma pertinent to this subsection.
Consider a system

¤x = φ (x ,u1,u2), (10)
where x ∈ Òn denotes the vector of state variables, u1 ∈ Òp ,u2 ∈ Òm denote the vector of input variables (distur-
bances), and φ is Lipschitz on bounded sets on Òn ×Òp ×Òm .

Lemma 3.1 If the system (10) with u2 ≡ 0 is ISS w.r.t a set A (compact and containing the origin) with gain γu1 , then there
exists a m × m matrix B (x ,u1) of smooth functions, invertible for all x ∈ Òn , u1 ∈ Òp and satisfies B (x ,u1) ≡ Im×m in a
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neighborhood of the origin of set A, and a function γu2 ∈ K∞, such that the system

¤x = φ (x ,u1,B (x ,u1)u2), (11)
is ISS w.r.t set A with gain (γu1 , γu2 ) . More specifically, \ αi ∈ K for i = 1, 2, 3, such that α1 ( |x |A) 6 V (x ) 6 α2 ( |x |A) and
the following hold true

|x |A > max{γ̃u1 ( |u1 |), γ̃u2 ( |u2 |) } =⇒ ∂V

∂x
φ (x ,u1,B (x ,u1)u2) 6 −0.5α3 ( |x |A),

where, γ̃u1 (e) = α−12 (α1 (γu1 (e))) and γ̃u2 (e) = α
−1
2 (α1 (γu2 (e))) .

The proof of the aforementioned lemma is provided in Appendix A and is an extension of the corresponding result on
equilibrium points in [32].

3.3 | Robustness of set ISS to time delays at input
The key result of this article is now ready to be stated. We first give the results of the robustness analysis as provided
in [28], but without the use of any practical constants. Additionally, we will compare the outcomes for the robustness
of set ISS to input time delays.

Consider the following system
¤x (t ) = f (x (t ),w (t )), (12)

where δ̃ > 0, x ∈ Òn , and w ∈ Òm .
Theorem 3.3 [28] If set A for (12) is ISS, i.e., there exists an ISS-Lyapunov function V : Òn → Ò≥0 which satisfies the
following

α1 ( |x |A) 6 V (x ) 6 α2 ( |x |A),

and ∂V
∂x

f (x ,w ) 6 −α3 ( |x |A) + γ ( |w |),

and the ISS gain is γ̃1 , α−11 ◦ α2 ◦ γ1, where γ1 = α
−1
3 (

1
1−ε γ) and ε ∈ (0, 1) in the absence of delay. Then there exists some

δ̃ > 0 such that the set A for ¤x (t ) = f (x (t ),w + g (xt )) is ISS and gain γ̃2 , α−11 ◦ α
−1
4 ◦ 8γ, where α4 (e) = α3 ◦ 0.5α

−1
2

under the assumption that g is a continuous function and satisfies,

|g (xt ) | 6 h ( |Vt |), for some h ∈ K∞ (C1)
We next utilize Theorem 3.2 to demonstrate the relaxed version of the robustness of set ISS before comparing the
two results.

Consider the system
¤x (t ) = f (x (t ),u (t − δ̃),w (t )), (13)

where δ̃ > 0, x ∈ Òn , u ∈ Òp and w ∈ Òm . If there exists α1, α2, α3 ∈ K∞, smooth functions k : Òn → Òm ,V : Òn →
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Ò>0 and γ ∈ G such that α1 ( |x (t ) |A) 6 V (t ) 6 α2 ( |x (t ) |A) , |x |A > γ ( |w |) =⇒ ∂V
∂x f (x , k (x ),w ) 6 −α3 ( |x (t ) |A) , wesay that set A for (13) is ISS with gain γ̃ , α−11 ◦ α2 ◦ γ in the absence of delay [35].

Theorem 3.4 If setA for (13) is ISS with gain γ̃ in the absence of delay, then there exists δ∗ > 0 such that for all δ̃ ∈ (0, δ∗) ,
the setA is uniformly ISS with gain γ̃, nonzero offset and nonzero restriction. In addition, the offset becomes arbitrarily small,
and the restriction becomes arbitrarily large as δ̃ approaches zero.
Proof Lemma 3.1 states that if the system (13) is ISS w.r.t. a set A in the absence of delay, then there exists a smooth
invertible m ×m matrix G and γθ ∈ K∞ such that the system

¤x = f (x , k (x ) +G (x ,w )θ,w ), (14)
satisfies

|x (t ) |A > max{γθ ( |θ (t ) |), γ ( |w (t ) |) } =⇒ ¤V 6 −0.5α3 ( |x (t ) |A) . (15)
The original system (13) can be expressed as (14) with θ (t ) = G (x (t ),w (t ))−1 [k (x (t − δ̃)) − k (x (t )) ]. The function
k and f are locally Lipschitz and ξ (t ) = k (x (t − δ̃)) − k (x (t )) . Since k is locally Lipschitz, we have,

|ξ (t ) | 6 L |x (t − δ̃) − x (t ) | 6 L
��� ∫ t

t−δ̃

dx

d s̄
d s̄

��� 6 L��� ∫ t

t−δ̃
f (x (s̄), k (x (s̄ − δ̃)),w (s̄))d s̄

���,
for some Lipschitz constant L > 0. We arrive at the last inequality using (13). When we apply the integral mean value
theorem to the equation above, we get,

|ξ (t ) | 6 Lδ̃ |f (x (c), k (x (c − δ̃)),w (c)) |,

where, c ∈ (t − δ̃, t ) . Therefore, a γ∗1 ∈ K will exist such that |ξ (t ) | 6 δ̃ max{γ∗1 ( |xt |A), γ∗1 ( |wt |A) }. One of such
constructions of γ∗1 ∈ K can be as follows,

γ∗1 (r1) = max
|κ |A6r1,|λ |A6r1,|ψ |A6r1

|f1 (κ, λ,ψ) |,

where f1 (x (t ), x (t − δ̃),w (t )) = f (x (t ), k (x (t − δ̃),w (t )) and we assume that f1 (κ, λ,ψ) = 0 when κ, λ,ψ ∈ A (this
ensures γ∗1 (0) = 0). We will have,
|f1 (x (c), x (c − δ̃),w (c)) | 6 max

|κ |A6 |x (c) |A ,|λ |A6 |x (c−δ̃ ) |A ,|ψ |A6 |w (c) |A
|f1 (κ, λ,ψ) |

6 max
|κ |A6 |xt |A ,|λ |A6 |xt |A ,|ψ |A6 |wt |A

|f1 (κ, λ,ψ) |

6 max { max
|κ |A6 |xt |A ,|λ |A6 |xt |A ,|ψ |A6 |xt |A

|f1 (κ, λ,ψ) |, max
|k |A6 |wt |A ,|λ |A6 |wt |A ,|ψ |A6 |wt |A

|f1 (κ, λ,ψ) |
}

6 max{γ∗1 ( |xt |A), γ∗1 ( |wt |A) },
where, |xt |A = inf

k ∈A
max
−2δ̃6s60

( |k − x (t + s) |) , and |wt |A = inf
k ∈A

max
−2δ̃6s60

( |k −w (t + s) |) . The above calculation shows

|ξ (t ) | 6 Lδ̃ |f1 (x (c), x (c − δ̃),w (c)) | 6 Lδ̃ max{γ∗1 ( |xt |A), γ∗1 ( |wt |A) }.
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Additionally, some γ1, γ2 ∈ K will exist such that
|θ (t ) | 6 δ̃ max{γ1 ( |xt |A), γ2 ( |wt |A) }. (16)

A is a compact set which contains origin so, |wt |A 6 |wt |, thus (16) can be written as
|θ (t ) | 6 δ̃ max{γ1 ( |xt |A), γ2 ( |wt |) }.

Defining γ̂ ∈ G by γ̂ , max{γθ (δ̃ .γ2 (e)), γ (e) }, it follows from (15) that
|x (t ) |A > max{γθ (δ̃ .γ1 ( |xt |A)), γ̂ ( |wt |) } =⇒ ¤V 6 −0.5α3 ( |x (t ) |A) .

The subsequent analysis follows from [17]. Since γθ (0) = 0, for each pair of strictly positive real numbers µ, and ∆,
there exists δ∗ > 0 such that δ̃ ∈ (0, δ∗) implies

α−11 ◦ α2 ◦ γθ (δ̃ .γ1 (e)) < e, [e ∈ (µ,∆) .

Given an arbitrarily small offset µ > 0 and an arbitrarily large (finite) restriction (∆x ,∆w ) , it follows from the Theorem
3.2 that there exists δ∗ > 0 such that δ̃ ∈ (0, δ∗) indicates the set A is uniformly ISS with gain α−11 ◦ α2 ◦ γ̂. Given the
offset δ and the restriction ∆w it is always feasible to further refine δ̃ such that

α−11 ◦ α2 ◦ γθ (δ̃ .γ2 (∆w )) 6 µ,

with µ being arbitrarily small. At this point, α−11 ◦ α2 ◦ γ̂ = max{δ, α−11 ◦ α2 ◦ γ }. Thus, α−11 ◦ α2 ◦ γ̂ can be replaced by
α−11 ◦ α2 ◦ γ = γ̃. �

Remark 3.2 Theorem 3.4 is a local result that holds for some suitably small neighborhood of set A determined by the ISS
gain lying inside the appropriate restriction and offset range.

3.4 | Comparative review
We compare our work with [28] because, to the best of our knowledge, [28] is the only pertinent study that analyzes
the robustness of set ISS to input delays. The novel contributions of our work w.r.t [28] are as below
• The robustness of the set ISS of a nonlinear system to input is demonstrated in the existing literature, in par-

ticular, [28], where the input is dependent on a state history as an additive effect, which may not always be
the case in practical applications. We are putting forth a more general setup to address this discrepancy and
demonstrate the set ISS of nonlinear system’s robustness to input time delays, where the control input is re-
placed by its time delayed version. In mathematical terms, [28] prove that if ¤x (t ) = f (x (t ),w (t )) is set ISS, then
¤x (t ) = f (x (t ),w (t )+g (xt )) will also be set ISS for some time delay δ > 0. On the other hand, our study establishes
that if ¤x (t ) = f (x (t ),u (t ),w (t )) is set ISS for some u = k (x (t )) , then the system ¤x (t ) = f (x (t ), k (xt ),w (t )) is
also set ISS for some time delay δ > 0, with k , g being continuous functions.
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• The state history function is yet again constrained in [28] as |g (xt ) | 6 h ( |Vt |) , for some h ∈ K∞, however in
our work, the state history functions are not subject to any such limitations. This condition indicated in [28] is
applicable to fewer systems to show set ISS robustness to time delay at the input as opposed to our method. We
will demonstrate via examples that it will be difficult for this criterion in [28] to hold in some systems.

We essentially compare Section 4.1 of [28] (the main result therein has also been restated in our article as Theorem
3.3, with practical constants as zero) against Theorem 3.4 of our paper. The result in Theorem 3.4 is a relaxation
since it allows more general non-additive delays to the input and removes constraint (C1) from Theorem 3.3. This
significantly increases the scope of robustness results under time delay for set stable systems. These contrasts are
further highlighted with the help of examples in the next section.

Remark 3.3 The proofs demonstrated in this article go beyond the simple substitution of |x | to |x |A . The novel variant of
Razumikhin theorem (Theorem 3.2) for uniform set ISS of FDEs is established by thoroughly demonstrating uniform stability
and convergence w.r.t sets, providing a foundation for our paper’s major result on robustness w.r.t. input time delay. Lemma
3.1 derived as an extension of the results in [32] for ISS of compact sets containing the origin also feeds into the proof of
Theorem 3.4. Another crucial and challenging aspect of the proof is constructing a general function γ∗1 (s) to demonstrate
set ISS for time delayed systems in Theorem 3.4.

4 | COMPARISON USING EXAMPLES
This section uses examples to show the robust set ISS analysis of a nonlinear system with delays described in Section
3.3.

The first example uses a set that just contains the origin to show how the set ISS is robust to input time delays
using Theorem 3.4. This serves as an additional example of the limitation of Theorem 3.3 where it is challenging to
satisfy a restrictive assumption given singleton set circumstances. The second example also illustrates the same with
sets rather than the origin.

4.1 | Example 1
Consider a nonlinear oscillator: {

¤x1 = x2
¤x2 = −k̄ (x1) − µ̄ (x2) +w ,

(17)

where the continuous functions k̄ : Ò → Ò and µ̄ : Ò → Ò satisfy the following conditions k̄ (0) = µ̄ (0) = 0 and that
for any r , 0 we have

r k̄ (r ) > 0, r µ̄ (r ) > 0.

w stands for a disturbing force. Under the above assumptions, the origin is the only equilibrium point of the unper-
turbed (w = 0) system. Let µ̄ (s) = µ̄s be linear, where µ̄ > 0 and k̄ be continuous with k̄ (0) = 0 and r k̄ (r ) > 0 for any
r ∈ Ò and in addition lim infr→±∞ k̄ (r ) , 0, and η ∈ K∞ be such that k̄ ( |e |) > η ( |e |) for any real e , 0. Consider the
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following Lyapunov function and its time derivative:

V (x ) = µ̄2

2
x21 + µ̄x1x2 + x

2
2 + 2

∫ x1

0
k̄ (r )dr

¤V (x ,w ) = −µ̄
(
x1k̄ (x1) + x22

)
+ (µ̄x1 + 2x2)w ≤ −

1

2
µ̄

(
|x1 | η ( |x1 |) + x22

)
if

1

2
µ̄

(
|x1 | η ( |x1 |) + x22

)
≥ (µ̄ |x1 | + 2 |x2 |) |w |. (18)

It is well known from [36] that

|x | > max
{√

1 + 4

µ̄2
8 |w |
µ̄
,

√
1 + µ̄

2

4
η−1 (4 |w |)

}
, γ ( |w |) (19)

implies (18). So, we have V as an ISS-Lyapunov function. By Definition 3, the system is ISS with the gain γ ∈ K∞
defined in (19). We can also represent the nonlinear oscillator system (17) as

¤x = f (x ) +w1,

where x = (x1, x2)> ∈ Ò2, w1 = (0,w )> ∈ Ò2 and f (x ) = (−x2,−k̄ (x1) − x2)> ∈ Ò2. The subsequent equation with
an input delay perturbation is

¤x = f (x ) +w1 + g (xt ),

with g (xt ) =
(
−x2 (t ) + x2 (t − τ)
x2 (t ) − x2 (t − τ),

)
, τ > 0, and µ̄ = 1, which results in the following time delayed modification of (17):

{
¤x1 (t ) = x2 (t − τ)
¤x2 (t ) = −k̄ (x1 (t )) − µ̄x2 (t − τ) +w (t ) .

Applying the mean value theorem, we obtain
|g (xt ) | =

√
2τ max

t−τ6s6t
| − k̄ (x1 (φ)) − x2 (φ − τ) +w (φ) |,

where φ ∈ [s − τ, s ] and |xt | = sup−2τ6s60 |x (t + s) |. It is difficult to establish the requirement that there exists a
h ∈ K∞, such that |g (xt ) | 6 h ( |Vt |) , even in situations where Theorem 3.3 is applicable. This is because we don’t
have the information on the shared relationship between w (φ) and x1 (φ), x2 (φ − τ) . We propose that the ISS of the
time delayed system can be demonstrated using Theorem 3.4) rather than having to go through the tedious process of
validating the above requirements of Theorem 3.3. In accordance with (17), we take into consideration the following
system {

¤x1 (t ) = u
¤x2 (t ) = −k̄ (x1 (t )) − µ̄u +w (t ),

(20)
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with feedback u = x2. Alternatively, we can write the above nonlinear oscillator (20) with µ̄ = 1 as,
¤x = f (x ) + u +w1,

where x = (x1, x2)> ∈ Ò2,u = (u1,u2)> ∈ Ò2, w1 = (0,w )> ∈ Ò2 and f (x ) = (0,−k̄ (x1))> ∈ Ò2. We choose
u = (u1,u2)> = (x2,−x2)>, such that the nonlinear oscillator (20) is ISS without any time delay at input. If we have a
time delay introduced in the feedback, we will then have the following:

¤x = f (x ) +
(
x2 (t − τ)
−x2 (t − τ)

)
+w1 . (21)

Given that the aforementioned system (20) is ISS without any time delay, (21) rewritten as,
¤x = f (x ) + u +G (x ,w )θ +w1,

where G (x ,w ) = I2 and
θ = (θ1, θ2)> = (x2 (t − τ) − x2 (t ),−(x2 (t − τ) − x2 (t )))>

satisfies the following
|x (t ) |A = |x (t ) | > max{γ ( |w (t ) |), γθ ( |θ (t ) |) }, (22)

γ ( |w (t ) |) , max
{
√
1 + 4(8 |w |),

√
1 + 1

4
η−1 (4 |w |)

}
γθ ( |θ (t ) |) , max {max{10(η−1 ( |θ |))4, 10(η−1 ( |θ |))2 }, 24√10( |θ |)}

=⇒ D+V (t ) 6 −1
4

(
|x1 | η ( |x1 |) + x22

)
.

We will prove the claim made above using the same Lyapunov function as we did for nonlinear oscillator (17):
V (x ) = 1

2
x21 + x1x2 + x

2
2 + 2

∫ x1

0
k̄ (r )dr

D+V (t ) = −
(
x1k̄ (x1) + x22

)
+ (x1 + 2x2)w + (2k̄ (x1) + x2 + x1)θ1 + (x1 + 2x2)θ2

6 −
(
|x1 | η ( |x1 |) + x22

)
+ ( |x1 | + 2 |x2 |) |w | + (2 |k̄ (x1) | + 3 |x2 | + 2 |x1 |) |θ |

6 −1
4

(
|x1 | η ( |x1 |) + x22

)
if (

|x1 | η ( |x1 |) + x22
)
≥ max{2 ( |x1 | + 2 |x2 |) |w |, 4(2 |k̄ (x1) | + 3 |x2 | + 2 |x1 |) |θ | }. (23)
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We will now prove that (22) implies (23): We have already shown that |x | > γ ( |w (t ) |) implies (
|x1 | η ( |x1 |) + x22

)
> {2 ( |x1 | + 2 |x2 |) |w | } in the case where there is no time delay in the oscillator. Let us now prove that

|x | > γθ ( |θ (t ) |) (24)
implies (

|x1 | η ( |x1 |) + x22
)
> 4(2 |k̄ (x1) | + 3 |x2 | + 2 |x1 |) |θ | }. (25)

We consider two cases for this: 2 |k̄ (x1) | + 2 |x1 | > 3 |x2 | and 2 |k̄ (x1) | + 2 |x1 | < 3 |x2 |. We consider k̄ (x1) = x31 here
onwards. If 2 |k̄ (x1) | + 2 |x1 | > 3 |x2 |, then |θ | 6 η ( |x1 |)

8(2|x1 |2+2)
6 η ( |x1 |) , because otherwise we have a contradiction

|x | =
√
x21 + x

2
2 =

√
x21 +

4

9
(x31 + x1)2

6 max{10 |x1 |4, 10 |x1 |2 } 6 max{10(η−1 ( |θ |))4, 10(η−1 ( |θ |))2 }.
Next we have, |θ | 6 η ( |x1 |)

8(2|x1 |2+2)
and it follows that 4(2 |x1 |3 + 3 |x2 | + 2 |x1 |) |θ | } 6 8(2 |x1 |2 + 2) |x1 | η ( |x1 |)

8(2|x1 |2+2)
6

|x1 |η ( |x1 |) 6
(
|x1 | η ( |x1 |) + x22

) . In the opposite case, 2 |x1 |3 + 2 |x1 | < 3 |x2 |, then |θ | 6 |x2 |
24 , because otherwise

we have a contradiction,
|x | =

√
x21 + x

2
2 ≤

√
(2x31 + 2x1)2 + x

2
2 6

√
9x22 + x

2
2 6
√
10 |x2 | 6 24

√
10 |θ |.

Hence, we have |θ | 6 |x2 |24 and it follows that 4(2 |x1 |3 +3 |x2 | +2 |x1 |) |θ | } 6 8(3 |x2 |) |θ | 6 |x2 |2 6 ( |x1 | η ( |x1 |) +x22 ) asdesired, which proves (24) implies (25). With θ (t ) = (x2 (t − τ) − x2 (t ),−(x2 (t − τ) − x2 (t )))> and x2 (t ) being locally
Lipschitz, we can further obtain the following using integral mean value theorem,

|θ (t ) | 6 τL | (−x31 (c) − x2 (c − τ) +w (c)) | 6 τmax{γ1 ( |xt |), γ2 ( |wt |) },
where c ∈ (t − τ, t ) and L is the Lipschitz constant corresponding to k̄ : [a, b ] → Ò and a, b ∈ Ò. Define

γ1 (r1) = max
|λ1 |6r1,|λ2 |6r1

10L |λ31 + λ2 |, γ2 (r2) = 10L |r2 |.

We now define γ̂ ∈ G by γ̂ , max{γθ (τ .γ2 (e)), γ (e) }, and following (22), we obtain
|x (t ) |A > max{γθ (τ .γ1 ( |xt |)), γ̂ ( |wt |) } =⇒ D+V (t ) 6 −1

4

(
|x1 | η ( |x1 |) + x22

)
.

We can now choose τ∗ > 0 such that for τ ∈ (0, τ∗) ,
α−11 ◦ α2 ◦ γθ (τ .γ1 (e)) < e, [e ∈ (µ,∆),

holds, for each pair of strictly positive real numbers µ and ∆.
For e ∈ (µ,∆) , where µ = 1, we have γ1 (e) = 10L |e3 + e |. The Lipschitz constant L corresponds to k̄ : [a, b ] → Ò
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and a, b ∈ Ò. For given k̄ , η (x1) = x31 implies that γθ ( |θ (t ) | = 24√10( |θ |) for e ∈ (1,∆) . Functions α1 (x ) = ‖x ‖2 and
α2 (x ) = 2(1 + ‖x ‖2) ‖x ‖2 are the lower and upper bounds respectively for the selected Lyapunov function V (x ) =
µ̄2

2 x
2
1 + µ̄x1x2 + x

2
2 + 2

∫ x1
0
k̄ (r )dr , with µ̄ = 1. Next, we satisfy

α−11 ◦ α2 ◦ γθ (τ .γ1 (e)) < e, [e ∈ (1,∆),

to obtain

755.88 × τL |e3 + e | <

√
−1 +

√
1 + 2 |e |2
2

, e ∈ (1,∆)

τ <

√
−1 +

√
1 + 2 |∆ |2

1073.95 × L |∆3 + ∆ |
.

The upper bound of τ can vary based on the constants µ,∆, and the Lipschitz constant L.
The analysis that follows assumes that τ can be further refined so that we achieve the same ISS gain as is for (17),

in accordance with [17] and Theorem 3.4. The next example shows how Theorems 3.3 and 3.4 differ by considering
a system with an equilibrium set as a compact, invariant set containing the origin.

4.2 | Example 2
Here, we focus on Stuart-Landau oscillator systems, which are used to model the behavior of complex systems in
various contexts. For instance, they can be used to characterize electronic oscillators, semiconductor lasers, chemical
reaction-diffusion systems, and neuro-physiological phenomena. Studies on the Stuart-Landau oscillator’s stability
can be found in [37]. A forced generalized Stuart-Landau oscillator is described by

¤z = −ν |z |2z + ζz + u, (26)
where z ∈ Ã represents the oscillator’s state, ν, ζ ∈ Ã are parameters defined as ν = νR + iνI and ζ = ζR + iζI ,
respectively, and u ∈ Ã is an input to the oscillator. Here, we consider ζR , νR > 0. The compact set of equilibrium
points for (26) is given by

A ,

{
z ∈ Ã : |z | =

√
ζR
νR

} ⋃
{z = 0}.

We define the norm | · |A as follows.

|z |A =


|z | if |z | 6 0.7

√
α ,√

| |z |2 − α | if |z | > 0.7
√
α

α , ζR/νR .

Let us consider the following candidate ISS-Lyapunov function
V (z ) = 1

4νR
[
|z |2 − α

]2
,
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where α = ζR/νR and |z |2 = z̄ z and z̄ signify the conjugate of z .
Let |z | 6 0.7√α then,V (z ) = |z |4 − 2α |z |2 +α2 and, since −|z |2 > −0.49α , we obtainV (z ) = |z |4 + 0.02α2 > |z |4.

Now, since |z |A = |z |, which implies that V (z ) > |z |4
A
. Next, we can do the same when |z | > 0.7

√
α and |z |A =√

| ( |z |2 − α) |. As obtained in [37], the time derivative ofV along the trajectories of (26) are

¤V (z ) 6 −1
2

[
|z |2 − α

]2
|z |2 + 1

2ν2R
|u |2 . (27)

The right-hand side of the abovementioned inequality is then bounded in terms of |z |A . To bound the term [
|z |2 − α

]2 |z |2
in the two cases ( |z |A 6 0.7√α and |z |A > 0.7√α ) independently. Denoting c3 ( |z |A) , min {

0.51α2 |z |2
A
, 0.49α

�� z |4
A
}

and combining the two cases together, we obtain
¤V (z ) 6 −c3 ( |z |A) +

1

2ν2R
|u |2,

which can also be rewritten as
|z |A > c−13

( 4
ν2R
|u |2

)
, γ ( |u |) =⇒ ¤V 6 −7

8
c3 ( |z |A) .

The Lyapunov functionV (z ) satisfies the conditions of Definition 3. Thus, the system (26) is set ISS w.r.t A with gain
γ ∈ K∞.

We now add input delay perturbation, which is g (zt ) = ν |z (t ) |2z (t ) − ν |z (t − τ) |2z (t − τ) − ζz (t ) + ζz (t − τ) . As
a result, the time delay modification of (26) is as follows:

¤z (t ) = −ν |z (t − τ) |2z (t − τ) + ζz (t − τ) + u (t ) .

We now employ the mean value theorem to obtain
|g (zt ) | ≤ τ |ζ (−ν |z (φ − τ) |2z (φ − τ) + ζz (φ − τ) + u (φ)) | + τ |3 |z (φ) |2ν (−ν |z (φ − τ) |2z (φ − τ) + ζz (φ − τ) + u (φ)) |.

It is difficult to establish the requirement that there exists a k ∈ K∞, such that |g (zt ) | 6 k ( |Vt |) , even in situations
where Theorem 3.3 is applicable. This is because we are unaware of any shared relationships between u (φ) and
z (φ), z (φ − τ) , where φ ∈ [t − τ, t ].

We propose that the set ISS of the time delayed system can be demonstrated using Theorem 3.4 rather than
validating the above requirements of Theorem 3.3. In accordance with (26), we take into consideration the following
system

¤z = w + u, (28)
where u ∈ Ã. We take into account the feedback w = k (z ) = −ν |z |2z + ζz with the parameters ν = νR + iνI and
ζ = ζR + iζI , and ζR , νR > 0. This system (28) is set ISS with respect to A. Now, we’ll examine whether the system (28)
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is set ISS with a time delay in feedback. To do the same, we first demonstrate that the subsequent system
¤z = −ν |z |2z + ζz + u + θ, (29)

with
θ = ν |z (t ) |2z (t ) − ν |z (t − τ) |2z (t − τ) − ζz (t ) + ζz (t − τ),

satisfies D+V (t ) 6 − 12 [
|z |2 − α

]2 |z |2 + 1
ν2R
|u |2 + 1

ν2R
|θ |2, or

|z |A > max {
c−13

( 2
ν2R
|θ |2

)
, c−13

( 4
ν2R
|u |2

)}
=⇒ D+V (t ) 6 − 1

4
c3 ( |z |A) . (30)

This is inferred from (27) when the time derivative of the ISS-Lyapunov function is taken along the trajectories (29).
It is important to note that we were unable to determine γθ ( |θ |) , which yields D+V (t ) 6 − 7

16 c3 ( |z |A) . However, thiswon’t impact our analysis as we have some definite negative function in |z |A . θ (t ) = k (z (t − τ)) − k (z (t )) and k is a
locally Lipschitz function. Thus, we obtain

|θ (t ) | 6 L
��� ∫ t

t−τ
(−ν |z (s − τ) |2z (s − τ) + ζz (s − τ) + u (s))ds

���,
for a particular Lipschitz constant when the function k is specified in a local domain. The results of applying the
integral mean value theorem to the aforementioned equation are as follows:

|θ (t ) | 6 Lτ | − ν |z (c − τ) |2z (c − τ) + ζz (c − τ) + u (c) |,

where c ∈ (t − τ, t ) , and
Lτ | − ν |z (c − τ) |2z (c − τ) + ζz (c − τ) + u (c) | 6 τmax{γ1 ( |zt |A), γ2 ( |ut |) }.

Define γ1 (r1) = max|λ |A6r1 10L | − ν |λ |2λ + ζλ |, where we assume for λ ∈ A, then 10L | − ν |λ |2λ + ζλ | = 0, and
γ2 (r2) = 10L |r2 |.We now define γ̂ ∈ G by γ̂ (e) , max{γθ (τ .γ2 (e)), γ (e) }, where γθ (e) = c−13 ( 2

ν2R
|e |2

) . As a result of
(30),

|z (t ) |A > max{γθ (τ .γ1 ( |zt |A)), γ̂ ( |ut |) } =⇒ ¤V 6 − c3 ( |z |A)
4

.

is implied. We now perform the identical procedures as in Subsection 4.1 to prove the findings from the Theorem 3.4
and to establish the set ISS of (29).

To compute the upper bound on the time delay at the input, we have γ1 (e) = 10L | − ν |e2 +α |√e2 + α + ζ√e2 + α |,
γθ (e) = c−13 (

2
ν2
R

|e |2) . Here we take into account that e ∈ (2,∆) and α =
ζR
νR

= 2 to choose c3 (e) = 0.51 × 4 |e |2 from
c3 (e) , min {

0.51α2 |e |2, 0.49α
�� e |4 } , using which we obtain γθ (e) = 1

νR
0.99 |e | for e ∈ (2,∆) . Functions α1 (e) =

1
4νR
|e |4 and α2 (e) = 1

νR
|e |4 represent the upper and lower bounds respectively for the chosen Lyapunov function
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V (z ) = 1
4νR

[
|z |2 − α

]2. We further satisfy

α−11 ◦ α2 ◦ γθ (τ .γ1 (e)) < e, [e ∈ (2,∆),

to obtain
1

νR
× 1

ν4
R

× 9.94 × L4 × τ4 | − ν |e2 + 2 |
√
e2 + 2 + ζ

√
e2 + 2 |4 < 1

4νR
|e |4, e ∈ (2,∆)

τ <
|∆ |νR

13.99L | − ν |∆2 + 2 |
√
∆2 + 2 + ζ

√
∆2 + 2 |

.

The upper bound of τ can vary based on the constants µ,∆, and the Lipschitz constant L. The analysis that follows
assumes that τ can be further refined so that we achieve the same ISS gain as is for (26),

5 | CONCLUSIONS
A Razumikhin-type set-stability theorem has been interpreted in terms of the ISS nonlinear small-gain theorem and
extended to cover the case of persistent disturbances. Set input-to-state stability (and set-global asymptotic stability
as a special case) is shown to be robust, in an appropriate sense, to time delays at the input for nonlinear control
systems also described by ordinary differential equations. We also compare our result on the robustness of set ISS to
time delay with a related result using illustrative examples.
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Appendix A.
To prove Lemma 3.1, we follow the same steps as in the proof of [32, Lemma 1].

With the hypothesis of the lemma andDefinition 1, that there exists a smooth functionV : Òn → Ò>0, α1, α2, α3 ∈
K∞, and γ̃u1 ∈ K such that α1 ( |x |A) 6 V (x ) 6 α2 ( |x |A) holds and

|x |A > γ̃u1 ( |u1 |) =⇒ ¤V =
∂V

∂x
φ (x ,u1, 0) 6 −α3 ( |x |A),

where γu1 (e) = α−11 ◦ α2 ◦ γ̃u1 (e) ∈ K . We define ũ2 = B (x ,u1)u2 and calculate the time derivative of the functionV
along the trajectories of (11),

¤V =
∂V

∂x
φ (x ,u1,B (x ,u1)u2) =

∂V

∂x
φ (x ,u1, 0) +

∂V

∂x
(φ (x ,u1, ũ2) − φ (x ,u1, 0)) . (31)

As φ is locally Lipschitz, there exist a ψ ∈ K∞ and a positive real number L > 1 such that using (31), we get
|x |A > γ̃u1 ( |u1 |) =⇒ ¤V 6 −α3 ( |x |A) + |ũ2 | (L +ψ (max{ |x |, |u1 |, |ũ2 | })) .
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Let us now define γ̃u2 (e) , max{e, α−13 (2(1+L) (e)) } ∈ K∞ and consider b (e) to be a smooth function which satisfies
b (e) = 1 in neighborhood of origin of set A (i.e., \ a δ1 > 0 such that b (e) = 1, [e ∈ [0, δ1 ]) and specifically is chosen
so that the following inequality

0 < b (e) 6 min { 1

0.5 +ψ (e) , 1
} (32)

holds for all e ∈ Ò>0. For X = [x>,u>1 ]
>, we assert that the matrix B (x ,u1) , b ( |X |)Im×m and the function γu2 (e) =

α−11 ◦ α2 ◦ γ̃u2 (e) satisfies the requirement of the lemma, i.e.,

|x |A > max{γ̃u1 ( |u1 |), γ̃u2 ( |u2 |) } =⇒ ∂V

∂x
φ (x ,u1,B (x ,u1)u2) 6 −0.5α3 ( |x |A) . (33)

Using the fact from (32), that b ( |X |) 6 1, we have
|x |A > γ̃u1 ( |u1 |) =⇒ ¤V 6 − α3 ( |x |A) + b ( |X |) |u2 | (L +ψ (max{ |x |, |u1 |, |u2 | })) .

Now,
|x |A > max{γ̃u1 ( |u1 |), |u2 | } =⇒ ¤V 6 −α3 ( |x |A) + b ( |X |) |u2 | (L +ψ (max{ |x |, |u1 | })) .

We use the fact from [38] that |x |A 6 |x | when a compact set contains the origin, which implies |u2 | 6 |x |A 6 |x | for
the above inequality. So,

|x |A > max{γ̃u1 ( |u1 |), |u2 | } =⇒ ¤V 6 −α3 ( |x |A) + b ( |X |) |u2 | (L +ψ ( |X |)) .

From (32) we have, b (e) 6 1 and b (e)ψ (e) 6 1 for e > 0 and so,
|x |A > max{γ̃u1 ( |u1 |), |u2 | } =⇒ ¤V 6 −0.5α3 ( |x |A) − 0.5α3 ( |x |A) + (L + 1) |u2 |,

which can be rewritten as
|x |A > max{γ̃u1 ( |u1 |), |u2 |, α−13 (2(L + 1) ( |u2 |)) } =⇒ ¤V 6 −0.5α3 ( |x |A),

where γ̃u2 (e) , max{s, α−13 (2(1 + L) (e)) } and γu2 (e) = α−11 ◦ α2 ◦ γ̃u2 (e) . Hence, (33) is satisfied.
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